

PRODUCT INFORMATION & ELISA MANUAL

IL-16 Antibody Pair [HRP] NBP3-11655 Sample Insert for reference use only

Matched Antibody Pair utilized in an Enzyme-linked Immunosorbent Assay for quantitative detection of Human IL-16.

For research use only.

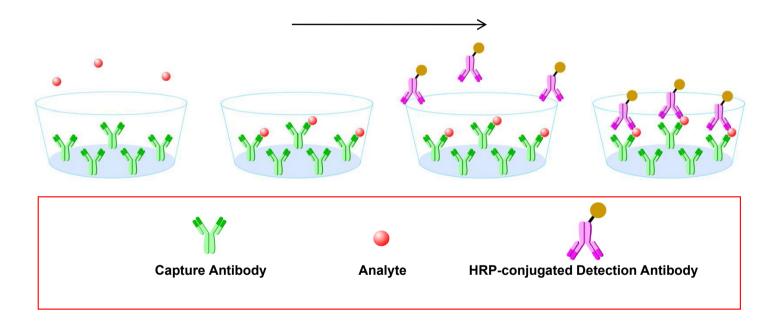
Not for diagnostic or therapeutic procedures.

www.novusbio.com - P: 303.730.1950 - P: 888.506.6887 - F: 303.730.1966 - technical@novusbio.com

Novus kits are guaranteed for 6 months from date of receipt

BACKGROUND

Interleukin-16, also known as Lymphocyte chemoattractant factor, LCF and IL16, is a secreted, cytoplasm and nucleus protein which contains 4PDZ (DHR) domains. Interleukin-16 / IL16 was originally described as a factor that could attract activated T cells in humans, it was previously called lymphocyte chemoattractant factor (LCF). Since then, this interleukin has been shown to recruit and activate many other cells expressing the CD4 molecule, including monocytes, eosinophils, and dendritic cells. The structure of Interleukin-16 / IL16 was determined following its cloning in 1994. Interleukin-16 / IL16 is produced as a precursor peptide (pro-IL-16) that requires processing by an enzyme called caspase-3 to become active. CD4 is the cell signaling receptor for mature IL-16. Interleukin-16 / IL16 is a pleiotropic cytokine that functions as a chemoattractant, a modulator of T cell activation, and an inhibitor of HIV replication. Interleukin-16 / IL16 is a cytokine that released by a variety of cells (including lymphocytes and some epithelial cells) that has been characterized as a chemoattractant for certain immune cells expressing the cell surface molecule CD4. The signaling process of Interleukin-16 / IL16 is mediated by CD4. It undergoes proteolytic processing, which is found to yield two functional proteins. Interleukin-16 / IL16 function is exclusively attributed to the secreted C-terminal peptide, while the N-terminal product may play a role in cell cycle control. Two alternatively spliced transcript variants encoding distinct isoforms have been reported.


PRINCIPLE OF THE TEST

The Novus Biologicals IL-16 Antibody Pair [HRP] is a solid phase sandwich ELISA (Enzyme-Linked Immunosorbent Assay). It utilizes a monoclonal antibody specific for IL-16 coated on a 96-well plate. Standards and samples are added to the wells, and any IL-16 present binds to the immobilized antibody. The wells are washed and a horseradish peroxidase conjugated rabbit anti-IL-16 monoclonal antibody is then added, producing an antibody-antigen-antibody "sandwich". The wells are again washed and TMB substrate solution is loaded, which produces color in proportion to the amount of IL-16 present in the sample. To end the enzyme reaction, the stop solution is added and absorbances of the microwell are read at 450nm.

INTENDED USE

- ◆ The Human IL-16 Antibody Pair [HRP] is for the quantitative determination of Human IL-16.
- This antibody pair contains the basic components required for the development of sandwich ELISAs.

ASSAY PROCEDURE SUMMARY

This antibody pair has been configured for research use only and is not to be used in diagnostic procedures.

MATERIALS PROVIDED

Bring all reagents to room temperature before use.

Capture Antibody - 0.4 mg/mL of mouse anti-IL16 monoclonal antibody (in PBS, pH 7.4). Dilute to a working concentration of 2 μ g/mL in CBS before coating.

Detection Antibody - 0.2 mg/mL rabbit anti-IL16 monoclonal antibody conjugated to horseradish-peroxidase (HRP) (in PBS, 50 % glycerol, pH 7.4). Dilute to working concentration of 0.5 μ g/mL in detection antibody dilution buffer before use.

Standard – Each vial contains 19 ng of recombinant IL16. Reconstitute with 1 mL detection antibody dilution buffer. After reconstitution, store at -20° C to -80° C in a manual defrost freezer. A seven-point standard curve using 2-fold serial dilutions in sample dilution buffer, and a high standard of 0.6 ng/mL is recommended.

SOLUTIONS REQUIRED

CBS - 0.05M Na₂CO₃, 0.05M NaHCO₃, pH 9.6, $0.2 \mu m$ filtered

TBS - 20 mM Tris, 150 mM NaCl, pH 7.4

Wash Buffer - 0.05% Tween20 in TBS, pH 7.2 - 7.4

Blocking Buffer - 2% BSA in Wash Buffer

Sample dilution buffer - 0.1% BSA in wash buffer, pH 7.2 - 7.4, 0.2 µm filtered

Detection antibody dilution buffer - 0.5% BSA in wash buffer, pH 7.2 - 7.4, 0.2 µm filtered

Substrate Solution: To achieve best assay results, fresh substrate solution is recommended

Substrate stock solution - 10mg / ml TMB (Tetramethylbenzidine) in DMSO

Substrate dilution buffer - 0.05M Na₂HPO₄ and 0.025M citric acid; adjust pH to 5.5

Substrate working solution - For each plate dilute 250 µl substrate stock solution in 25ml substrate dilution

buffer and then add 80 μ l 0.75% H_2O_2 , mix it well

Stop Solution - 2 N H₂SO₄

PRECAUTION

The Stop Solution suggested for use with this antibody pair is an acid solution. Wear eye, hand, face, and clothing protection when using this material.

STORAGE

Capture Antibody: Aliquot and store at -20° C to -80° C for up to 6 months from date of receipt. Avoid repeated freeze-thaw cycles.

Detection Antibody: Protect it from prolonged exposure to light. Aliquot and store at -20 °C to -80 °C and for up to 6 months from date of receipt. Avoid repeated freeze-thaw cycles.

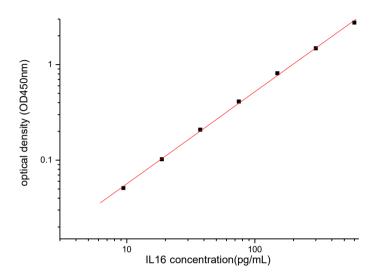
Standard: Store lyophilized standard at -20° C to -80° C for up to 6 months from date of receipt. Aliquot and store the reconstituted standard at -80° C for up to 1 month. Avoid repeated freeze-thaw cycles.

GENERAL ELISA PROTOCOL

Plate Preparation

- 1. Dilute the capture antibody to the working concentration in CBS. Immediately coat a 96-well microplate with 100µL per well of the diluted capture antibody. Seal the plate and incubate overnight at 4°C.
- 2. Aspirate each well and wash with at least 300µl wash buffer, repeating the process two times for a total of three washes. Complete removal of liquid at each step is essential for good performance. After the last wash, remove any remaining wash buffer by inverting the plate and blotting it against clean paper towels.
- 3. Block plates by adding 300 µL of blocking buffer to each well. Incubate at room temperature for a minimum of 1 hour.
- 4. Repeat the aspiration/wash as in step 2. The plates are now ready for sample addition.

Assay Procedure


- 1. Add 100 µL of sample or standards in sample dilution buffer per well. Seal the plate and incubate 2 hours at room temperature.
- 2. Repeat the aspiration/wash as in step 2 of plate preparation.
- 3. Add 100 µL of the detection antibody, diluted in antibody dilution buffer, to each well. Seal the plate and incubate 1 hour at room temperature.
- 4. Repeat the aspiration/wash as in step 2 of plate preparation.
- 5. Add 200 µL of substrate solution to each well. Incubate for 20 minutes at room temperature (**if substrate solution is not as requested, the incubation time should be optimized**). Avoid placing the plate in direct light.
- 6. Add 50 µL of stop solution to each well. Gently tap the plate to ensure thorough mixing.
- 7. Determine the optical density of each well immediately, using a microplate reader set to 450 nm.

CALCULATION OF RESULTS

- Calculate the mean absorbance for each set of duplicate standards, controls and samples. Subtract the mean zero standard absorbance from each.
- Construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on the graph.
- To determine the concentration of the unknowns, find the unknowns' mean absorbance value on the y-axis and draw a horizontal line to the standard curve. At the point of intersection, draw a vertical line to the x-axis and read the concentration. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.
- Alternatively, computer-based curve-fitting statistical software may also be employed to calculate the concentration of the sample.

TYPICAL DATA

This standard curve is only for demonstration purposes. A standard curve should be generated for each assay.

Concentration (pg/ml)	Zero standard subtracted OD				
0	0.000				
9.4	0.051				
18.8	0.102				
37.5	0.208				
75	0.411				
150	0.811				
300	1.482				
600	2.748				

PERFORMANCE CHARACTERISTIC

SENSITIVITY

The minimum detectable dose of Human IL-16 was determined to be approximately **9.4 pg/ml**. This is defined as at least three times standard deviations above the mean optical density of 10 replicates of the zero standard.

TROUBLE SHOOTING

Problems	Possible Sources	Solutions			
	Incorrect or no Detection Antibody was added	Add appropriate Detection Antibody and continue			
No signal	Substrate solution was not added	Add substrate solution and continue			
	Incorrect storage condition	Check if the kit is stored at recommended condition and used before expiration date			
Poor Standard Curve	Standard was incompletely reconstituted or was inappropriately stored	Aliquot reconstituted standard and store at -80 $^{\circ}\mathrm{C}$			
	Imprecise / inaccurate pipetting	Check / calibrate pipettes			
	Incubations done at inappropriate temperature, timing or agitation	Follow the general ELISA protocol			
	Background wells were contaminated	Avoid cross contamination by using the sealer appropriately			
Poor detection value	The concentration of antigen in samples was too low	Enriching samples to increase the concentration of antigen			
	Samples were ineffective	Check if the samples are stored at cold environment. Detect samples in timely manner			
High Background	Insufficient washes	Use multichannel pipettes without touching the reagents on the plate			
	Insumcient wasnes	Increase cycles of washes and soaking time between washes			
	TMB Substrate Solution was contaminated	TMB Substrate Solution should be clear and colorless prior to addition to wells			
	Materials were contaminated.	Use clean plates, tubes and pipettes tips			
Non-specificity	Samples were contaminated	Avoid cross contamination of samples			
	The concentration of samples was too high	Try higher dilution rate of samples			

	ELISA Plate Template											
	1	2	3	4	5	6	7	8	9	10	11	12
Α												
В												
С												
D												
E												
F												
G												
Н												

Human IL-16 Antibody Pair [HRP] Notes