PRODUCT INFORMATION & ELISA MANUAL # ACBD6 Antibody Pair [HRP] NBP2-79347 Sample Insert for reference use only Matched Antibody Pair utilized in an Enzymelinked Immunosorbent Assay for quantitative detection of Human ACBD6. For research use only. Not for diagnostic or therapeutic procedures. www.novusbio.com - P: 303.730.1950 - P: 888.506.6887 - F: 303.730.1966 - technical@novusbio.com Novus kits are guaranteed for 6 months from date of receipt #### BACKGROUND Human acyl-coenzyme A binding domain-containing member 6 (ACBD6) is a modular protein that carries an acyl-CoA binding domain at its N terminus and two ankyrin motifs at its C terminus. In mammals, there are six members of the acyl-CoA binding domain-containing (ACBD) family, and their annotation is not uniform. All six ACBD proteins contain an ACB domain at the N terminus, but they do not share significant homology at the C-terminal region. ACBD6 is a 32 kDa protein that is predicted by sequence analysis to carry an ACB domain between residues 42 and 125 and two ANK motifs at its C terminus. This protein binds long-chain acyl-CoAs with a strong preference for unsaturated, C18:1-CoA and C20:4-CoA, over saturated, C16:0-CoA, acyl species. ACBD6 is not a ubiquitous protein, but it is expressed in hematopoietic tissues and appears to be restricted to primitive stem cells present in those tissues with functions in blood and vessel development. ACBD6 was detected in bone marrow, spleen, placenta, cord blood, circulating CD34+ progenitors, and embryonic-like stem cells derived from placenta. In placenta, the protein was only detected in CD34+ progenitor cells present in blood and in CD31+ endothelial cells surrounding the blood vessels. These cells were also positive for the marker CD133, and they probably constitute hemangiogenic stem cells, precursors of both blood and vessels. We propose that human ACBD6 represents a cellular marker for primitive progenitor cells with functions in hematopoiesis and vascular endothelium development. #### PRINCIPLE OF THE TEST This is a solid phase sandwich ELISA (Enzyme-Linked Immunosorbent Assay). It utilizes a monoclonal antibody specific for ACBD6 coated on a 96-well plate. Standards and samples are added to the wells, and any ACBD6 present binds to the immobilized antibody. The wells are washed and a horseradish peroxidase conjugated mouse anti-ACBD6 monoclonal antibody is then added, producing an antibody-antigen-antibody "sandwich". The wells are again washed and TMB substrate solution is loaded, which produces color in proportion to the amount of ACBD6 present in the sample. To end the enzyme reaction, the stop solution is added and absorbances of the microwell are read at 450 nm. #### **INTENDED USE** - ◆The ACBD6 Antibody Pair [HRP] is for the quantitative determination of Human ACBD6. - ◆ It contains the basic components required for the development of sandwich ELISAs. #### ASSAY PROCEDURE SUMMARY This has been configured for research use only and is not to be used in diagnostic procedures. #### MATERIALS PROVIDED Bring all reagents to room temperature before use. **Capture Antibody** – 0.4 mg/mL fomouse anti-&BD6 monoclonal antibody. Dilute to a working concentration of 2.0 µg/mL in CBS before coating. **Detection Antibody** - 0.5 mg/mL mouse anti-ACBD6 monoclonal antibody conjugated to horseradish-peroxidase (HRP). Dilute to working concentration of 0.5 µg/mL in detection antibody dilution buffer before use. **Standard** – Each vial contains 150 ng of recombinant ACBD6. Reconstitute standard powder with 1 mL detection antibody dilution buffer. After reconstitution, store at -20℃ to -80℃ in a manual defrost freezer. A seven-point standard curve using 2-fold serial dilutions in sample dilution buffer, and a high standard of 3000 pg/mL is recommended. #### SOLUTIONS REQUIRED CBS - 0.05M $\,\text{Na}_2\text{CO}_3$, $\,$ 0.05M $\,\text{NaHCO}_3$, pH 9.6, 0.2 $\,\mu\text{m}$ filtered **TBS** - 20 mM Tris, 150 mM NaCl, pH 7.4 Wash Buffer - 0.05% Tween20 in TBS, pH 7.2 - 7.4 **Blocking Buffer** - 2% BSA in Wash Buffer Sample dilution buffer - 0.1% BSA in wash buffer, pH 7.2 - 7.4, 0.2 µm filtered **Detection antibody dilution buffer** - 0.5% BSA in wash buffer, pH 7.2 - 7.4, 0.2 μm filtered Substrate Solution: To achieve best assay results, fresh substrate solution is recommended Substrate stock solution - 10mg / ml TMB (Tetramethylbenzidine) in DMSO Substrate dilution buffer - 0.05M Na₂HPO₄ and 0.025M citric acid; adjust pH to 5.5 Substrate working solution - For each plate dilute 250 μ l substrate stock solution in 25ml substrate dilution buffer and then add 80 μ l 0.75% H_2O_2 , mix it well Stop Solution - 2 N H₂SO₄ #### **PRECAUTION** The Stop Solution suggested for use with this antibody pair is an acid solution. Wear eye, hand, face, and clothing protection when using this material. #### **STORAGE** **Capture Antibody**: Aliquot and store at -20° C to -80° C for up to 6 months from date of receipt. Avoid repeated freeze-thaw cycles. **Detection Antibody**: Protect it from prolonged exposure to light. Aliquot and store at -20° C to -80° C and for up to 6 months from date of receipt. Avoid repeated freeze-thaw cycles. **Standard**: Store lyophilized standard at -20° C to -80° C for up to 6 months from date of receipt. Aliquot and store the reconstituted standard at -80° C for up to 1 month. Avoid repeated freeze-thaw cycles. #### GENERAL ELISA PROTOCOL #### **Plate Preparation** - 1.Dilute the capture antibody to the working concentration in CBS. Immediately coat a 96-well microplate with 100 μ L per well of the diluted capture antibody. Seal the plate and incubate overnight at 4°C. - 2.Aspirate each well and wash with at least 300µl wash buffer, repeating the process two times for a total of three washes. Complete removal of liquid at each step is essential for good performance. After the last wash, remove any remaining wash buffer by inverting the plate and blotting it against clean paper towels. - 3.Block plates by adding 300 µL of blocking buffer to each well. Incubate at room temperature for a minimum of 1 hour. - 4.Repeat the aspiration/wash as in step 2. The plates are now ready for sample addition. #### **Assay Procedure** - 1.Add 100 μL of sample or standards in sample dilution buffer per well. Seal the plate and incubate 2 hours at room temperature. - 2. Repeat the aspiration/wash as in step 2 of plate preparation. - 3.Add 100 μ L of the detection antibody, diluted in antibody dilution buffer, to each well. Seal the plate and incubate 1 hour at room temperature. - 4. Repeat the aspiration/wash as in step 2 of plate preparation. - 5.Add $200~\mu L$ of substrate solution to each well. Incubate for 20~minutes at room temperature (if substrate solution is not as requested, the incubation time should be optimized). Avoid placing the plate in direct light. - 6.Add 50 µL of stop solution to each well. Gently tap the plate to ensure thorough mixing. - 7. Determine the optical density of each well immediately, using a microplate reader set to 450 nm. #### CALCULATION OF RESULTS - •Calculate the mean absorbance for each set of duplicate standards, controls and samples. Subtract the mean zero standard absorbance from each. - •Construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on the graph. - •To determine the concentration of the unknowns, find the unknowns' mean absorbance value on the y-axis and draw a horizontal line to the standard curve. At the point of intersection, draw a vertical line to the x-axis and read the concentration. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor. - •Alternatively, computer-based curve-fitting statistical software may also be employed to calculate the concentration of the sample. #### **TYPICAL DATA** This standard curve is only for demonstration purposes. A standard curve should be generated for each assay. | Concentration (pg/ml) | Zero standard subtracted OD | |-----------------------|-----------------------------| | 0 | 0.000 | | 46.875 | 0.040 | | 93.75 | 0.083 | | 187.5 | 0.167 | | 375 | 0.319 | | 750 | 0.663 | | 1500 | 1.348 | | 3000 | 2.729 | #### PERFORMANCE CHARACTERISTIC #### SENSITIVITY The minimum detectable dose of Human ACBD6 was determined to be approximately 46.875 pg/ml. This is defined as at least three times standard deviations above the mean optical density of 10 replicates of the zero standard. ### TROUBLE SHOOTING | Problems | Possible Sources | Solutions | | | | |------------------------|---|--|--|--|--| | | Incorrect or no Detection Antibody was added | Add appropriate Detection Antibody and continue | | | | | No signal | Substrate solution was not added | Add substrate solution and continue | | | | | | Incorrect storage condition | Check if the kit is stored at recommended condition and used before expiration date | | | | | Poor Standard
Curve | Standard was incompletely reconstituted or was inappropriately stored | Aliquot reconstituted standard and store at -80 $^{\circ}\mathrm{C}$ | | | | | | Imprecise / inaccurate pipetting | Check / calibrate pipettes | | | | | | Incubations done at inappropriate temperature, timing or agitation | Follow the general ELISA protocol | | | | | | Background wells were contaminated | Avoid cross contamination by using the sealer appropriately | | | | | Poor detection value | The concentration of antigen in samples was too low | Enriching samples to increase the concentration of antigen | | | | | | Samples were ineffective | Check if the samples are stored at cold environment. Detect samples in timely manner | | | | | High Background | Insufficient washes | Use multichannel pipettes without touching the reagents on the plate | | | | | | insunicient wasnes | Increase cycles of washes and soaking time between washes | | | | | | TMB Substrate Solution was contaminated | TMB Substrate Solution should be clear and colorless prior to addition to wells | | | | | | Materials were contaminated. | Use clean plates, tubes and pipettes tips | | | | | Non-specificity | Samples were contaminated | Avoid cross contamination of samples | | | | | | The concentration of samples was too high | Try higher dilution rate of samples | | | | | | ELISA Plate Template | | | | | | | | | | | | |---|----------------------|---|---|---|---|---|---|---|---|----|----|----| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | A | | | | | | | | | | | | | | В | | | | | | | | | | | | | | С | | | | | | | | | | | | | | D | | | | | | | | | | | | | | E | | | | | | | | | | | | | | F | | | | | | | | | | | | | | G | | | | | | | | | | | | | | H | | | | | | | | | | | | | ## Human ACBD6 Antibody Pair [HRP] Notes