

Lactose Assay Kit

Catalog Number KA1672

100 assays

Version: 04

Intended for research use only

Table of Contents

Introduction	3
Intended Use	3
Principle of the Assay	3
General Information	4
Materials Supplied	4
Storage Instruction	4
Materials Required but Not Supplied	4
Precautions for Use	4
Assay Protocol	5
Assay Procedure	5
Data Analysis	7
Calculation of Results	7
Resources	8
References	8

Introduction

Intended Use

- Applications:
- ✓ Assays of lactose in milk and other biological samples.
- ✓ Drug Discovery/Pharmacology: effects of drugs on lactose metabolism.
- ✓ Food and Beverages: lactose in food and beverages products.
- Features:
- ✓ Use as little as 20 μL samples. Linear detection range in 96-well plate: 17 to 2000 μM lactose for colorimetric assays and 6 to 100 μM for fluorimetric assays

Principle of the Assay

LACTOSE ($C_{12}H_{22}O_{11}$), also called milk sugar, is a disaccharide that consists of β -D-galactose and α/β -D-glucose through a β 1-4 glycosidic linkage. Lactose is the major sugar and makes up 2–8% of milk. Simple, direct and high-throughput assays for lactose determination find wide applications. Lactose Assay Kit uses specific enzyme-coupled reactions in which lactose is cleaved and the resulting galactose forms a colored product. The color intensity at 570nm or fluorescence intensity at 530nm/585nm is directly proportional to the lactose concentration in the sample.

General Information

Materials Supplied

List of component

Component	Amount
Assay Buffer	10 mL
Enzyme Mix	Dried
Lactase	Dried
Dye Reagent	120 µL
Standard (20 mM Lactose)	1 mL

Storage Instruction

Store all components at -20 ℃. Shelf life of 12 months after receipt.

Materials Required but Not Supplied

Pipetting devices, centrifuge tubes, clear flat bottom 96-well plates, optical density plate reader; black 96-well plates and fluorescence plate reader.

Precautions for Use

- Precautions
- ✓ Reagents are for research use only. Normal precautions for laboratory reagents should be exercised while using the reagents.

Assay Protocol

Assay Procedure

COLORIMETRIC PROCEDURE

Note: (1) glycerol and SH-containing reagents (e.g. β–mercaptoethanol, dithiothreitol) are known to interfere in this assay and should be avoided in sample preparation. (2) For samples containing galactose, a sample blank is necessary (see Procedure); (3) This assay is based on a kinetic reaction. To ensure identical incubation time, addition of Working Reagent to standard and samples should be quick and mixing should be brief but thorough. Use of a multi-channel pipettor is recommended.

Sample treatment: Milk samples should be cleared by mixing 600 μ L milk with 100 μ L 6 N HCI. Centrifuge 5 min at 14,000 rpm. Transfer 300 μ L supernatant into a clean tube and neutralize with 50 μ L 6 N NaOH. The neutralized supernatant is ready for assay (dilution factor n = 1.36).

- 1. Equilibrate all components to room temperature. Reconstitute the Lactase and Enzyme mix with 120 μL dH₂O. Reconstituted Lactase and Enzyme mix are stable for 3 months if stored at -20 ℃. During experiment, keep reconstituted Lactase and Enzyme Mix in a refrigerator or on ice.
- 2. Standards and samples: prepare 400 μ L 2000 μ M Standard by mixing 40 μ L 20 mM standard with 360 μ L dH₂O. Dilute standard in dH₂O as follows.

No	2000 μM STD + H ₂ O	Vol (μL)	Lactose (µM)
1	100 μL + 0μL	100	2000
2	80 μL + 20 μL	100	1600
3	60 μL + 40 μL	100	1200
4	40 μL + 60 μL	100	800
5	30 μL + 70 μL	100	600
6	20 μL + 80 μL	100	400
7	10 μL + 90 μL	100	200
8	0 μL +100 μL	100	0

Transfer 20 µL standards and 20 µL samples into separate wells of a clear flat bottom 96-well plate. *Note:* if a sample is known to contain galactose, transfer 20 µL sample in duplicate (one sample and one sample blank).

- 3. Reaction. For each reaction well, mix 85 µL Assay Buffer, 1 µL Lactase, 1 µL Enzyme Mix (vortex briefly before pipetting), and 1 µL Dye Reagent in a clean tube. (Note: for the sample blanks, prepare a control Working Reagent which is the same except WITHOUT the 1 µL Lactase). Transfer 80 µL Working Reagent into each reaction (and control) well. Tap plate to mix. Incubate 30 min at room temperature.
- 4. Read optical density at 570nm (550-585nm).

FLUORIMETRIC PROCEDURE

For fluorimetric assays, the linear detection range is 6 to 100 μ M lactose. Prepare 100 μ M lactose standard by mixing 5 μ L 20 mM standard with 995 μ L H₂O. Then dilute standards in H₂O (see Colorimetric Procedure) to 100, 80, 60, 40, 30, 20, 10 and 0 μ M.

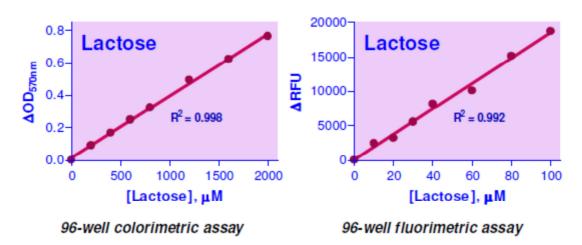
- 1. Transfer 20 μ L standards and 20 μ L samples into separate wells of a black 96-well plate. Prepare Sample Blank if necessary.
- 2. Add 80 µL Working Reagent, tap plate to mix. Incubate 30 min.
- 3. Read fluorescence at λ_{ex} = 530nm and λ_{em} = 585nm.

Notes: If the calculated lactose concentration of a sample is higher than 2000 μ M in colorimetric assay or 100 μ M in fluorimetric assay, dilute sample in water and repeat the assay. Multiply result by the dilution factor n.

Data Analysis

Calculation of Results

Subtract blank value (water, #8) from the standard values and plot the ΔOD or ΔRFU against standard concentrations. Determine the slope and calculate the lactose concentration of Sample,


Colorimetry: [Lactose] =
$$\frac{\text{OD}_{\text{SAMPLE}} - \text{OD}_{\text{BLANK}}}{\text{Slope}} \times n \, (\mu M)$$

Fluorimetry : [Lactose] =
$$\frac{RFU_{SAMPLE} - RFU_{BLANK}}{Slope} \times n (\mu M)$$

 OD_{SAMPLE} , OD_{BLANK} , RFU_{SAMPLE} , RFU_{BLANK} are optical density and fluorescence values of the Sample and Blank. The Blank is water if there is no galactose, and Sample Blank if sample contains galactose. n is the dilution factor.

Conversions: 1 mM lactose equals 36 mg/dL, 0.036% or 360 ppm.

Lactose Standard Curves

Resources

References

- 1. Gülce H. et al. (2002). A novel two-enzyme amperometric electrode for lactose determination. Anal Sci. 18(2):147-150.
- 2. Kleyn DH, Trout JR. (1984). Enzymatic-ultraviolet method for measuring lactose in milk: collaborative study. J Assoc Off Anal Chem. 67(3):637-640.
- 3. Tsenkova R, et al (1999). Near-infrared spectroscopy for dairy management: measurement of unhomogenized milk composition. J Dairy Sci. 82(11): 2344-2351.