

PPARA Transcription Factor Assay Kit

Catalog Number KA1356

96 assays

Version: 04

Intended for research use only

www.abnova.com

Table of Contents

Introduction
Background3
Principle of the Assay3
General Information5
Materials Supplied5
Storage Instruction6
Materials Required but Not Supplied6
Precautions for Use7
Assay Protocol8
Reagent Preparation8
Sample Preparation9
Assay Procedure 11
Data Analysis14
Performance Characteristics14
Resources16
Trouble shooting16
References
Plate Layout

Introduction

Background

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the large family of nuclear hormone receptors. There are three subtypes, PPAR α , β/δ , and γ which are expressed at variable levels in different tissues.¹ PPAR α was first identified based on its control of genes encoding peroxisomal fatty acid oxidation enzymes in response to peroxisome proliferators such as fibric acid derivatives. It is expressed predominantly in the liver, heart and kidneys.¹ Upon activation by ligands, such as free fatty acids, lipids and other small molecules, PPAR α forms a heterodimeric complex with RXR α . This ligand-activated complex binds to specific DNA sequences called response elements, allowing transcription of target genes involved in lipid metabolism. PPAR α is activated by a diverse group of small molecules which include the "fibrate" class of synthetic small molecule ligands, clofibrate, fenofibrate, and benzafibrate.² The modulation of PPAR α transcriptional activity by small molecules is under investigation as potential drug targets in developing treatments for several life altering diseases, including atherosclerosis, obesity, and diabetes.^{3,4}

Principle of the Assay

The PPARA Transcription Factor Assay Kit is a non-radioactive, sensitive method for detecting specific transcription factor DNA binding activity in nuclear extracts. A 96-well enzyme-linked immunosorbent assay (ELISA) replaces the cumbersome radioactive electrophoretic mobility shift assay (EMSA). A specific double stranded DNA (dsDNA) sequence containing the peroxisome proliferator response element (PPRE) is immobilized onto the bottom of wells of a 96-well plate. PPARs contained in a nuclear extract, bind specifically to the PPRE. PPARα is detected by addition of specific primary antibody directed against PPARα. A secondary antibody conjugated to HRP is added to provide a sensitive colorometric readout at 450 nm. The PPARA Transcription Factor Assay Kit detects human, mouse, and rat PPARα. It will not cross-react with PPARγ or PPARδ.

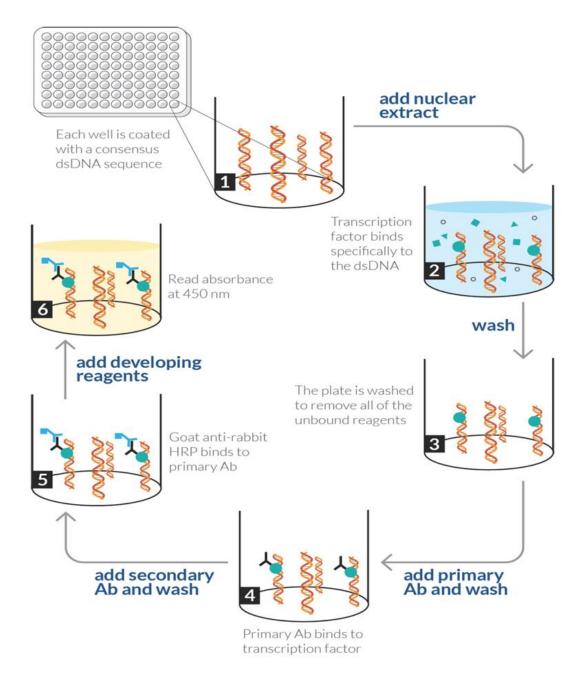


Figure 1. Schematic of the Transcription Factor Binding Assay

General Information

Materials Supplied

List of component

Component	Amount
Transcription Factor Binding Assay Buffer (4x)	3 mL
Transcription Factor Reagent A	120 μL
Transcription Factor PPARα Positive Control	150 μL
Transcription Factor Antibody Binding Buffer (10x)	3 mL
Transcription Factor PPARα Primary Antibody	120 µL
Wash Buffer Concentrate (400x)	5 mL
Polysorbate 20	3 mL
Transcription Factor PPAR Competitor dsDNA	120 μL
Transcription Factor Goat Anti-Rabbit HRP Conjugate	120 µL
Transcription Factor PPAR 96-Well Strip Plate	1 Plate
96-Well Cover Sheet	1 slide
Transcription Factor Developing Solution	12 mL
Transcription Factor Stop Solution	12 mL

Storage Instruction

This kit will perform as specified if stored as directed and used before the expiration date indicated on the outside of the box.

Kit components may be stored at -20°C prior to use. For long term storage, the Positive Control should be thawed on ice, aliquoted at 25 μ L/vial, and stored at -80°C. After opening the kit, we recommend each kit component be stored according to the temperature listed below.

Component	Storage
Transcription Factor Binding Assay Buffer (4x)	4°C
Transcription Factor Reagent A	-20°C
Transcription Factor PPARα Positive Control	-80°C
Transcription Factor Antibody Binding Buffer (10x)	4°C
Transcription Factor PPARα Primary Antibody	-20°C
Wash Buffer Concentrate (400x)	RT
Polysorbate 20	RT
Transcription Factor PPAR Competitor dsDNA	-20°C
Transcription Factor Goat Anti-Rabbit HRP Conjugate	-20°C
Transcription Factor PPAR 96-Well Strip Plate	4°C
96-Well Cover Sheet	RT
Transcription Factor Developing Solution	4°C
Transcription Factor Stop Solution	RT

Materials Required but Not Supplied

- ✓ A plate reader capable of measuring absorbance at 450 nm
- ✓ Adjustable pipettes and a repeating pipettor
- ✓ A source of UltraPure water; glass Milli-Q or HPLC-grade water are acceptable
- ✓ 300 mM dithiothreitol (DTT)
- ✓ Nuclear Extraction Kit (KA1346) or buffers for preparation of nuclear extracts.

NOTE: The components in each kit lot have been quality assured and warranted in this specific combination only; please do not mix them with components from other lots.

Precautions for Use

✓ WARNING:

This product is for research use only. Not for human or veterinary diagnostic or therapeutic use.

- ✓ Precautions
- Please read these instructions carefully before beginning this assay.
- Kit components may be stored at -20°C prior to use. For long term storage, the Positive Control should be thawed on ice, aliquoted at 25 μL/vial and stored at -80°C. If the assay will be used on multiple days, we recommend each kit component be stored according to the temperatures listed in the booklet.
- ✓ Safety Data:

This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Material Safety Data Sheet.

- ✓ Pipetting Hints
- Use different tips to pipette each reagent.
- Before pipetting each reagent, equilibrate the pipette tip in that reagent (*i.e.*, slowly fill the tip and gently expel the contents, repeat several times).
- Do not expose the pipette tip to the reagent(s) already in the well.
- ✓ General Information
- It is not necessary to use all the wells on the plate at one time; however a positive control should be run every time.
- For each plate or set of strips it is recommended that two Blk, two NSB, and two PC wells be included.

Assay Protocol

Reagent Preparation

- Transcription Factor Antibody Binding Buffer (10X)
 One vial contains 3 mL of a 10X stock of Transcription Factor Antibody Binding Buffer (ABB) to be used for diluting the primary and secondary antibodies. To prepare 1X ABB, dilute 1:10 by adding 27 mL of UltraPure water. Store at 4°C for up to six months.
- ✓ Wash Buffer Concentrate (400X)

One vial contains 5 mL of 400X Wash Buffer. Dilute the contents of the vial to a total volume of 2 liters with UltraPure water and add 1 mL of Polysorbate 20.

NOTE: Polysorbate 20 is a viscous liquid and cannot be measured by a pipette. A positive displacement device such as a syringe should be used to deliver small quantities accurately. A smaller volume of Wash Buffer Concentrate can be prepared by diluting the Wash Buffer Concentrate 1:400 and adding Polysorbate 20 (0.5 mL/liter of Wash Buffer). Store at 4°C for up to two months.

✓ Transcription Factor Binding Assay Buffer (4X)

One vial contains 3 mL of a 4X stock of Transcription Factor Binding Assay Buffer (TFB). Prepare Complete TFB Assay Buffer (CTFB) immediately prior to use in 1.5 mL centrifuge tubes or 15 mL conical tubes as outlined in Table 1 below. This buffer is now referred to as CTFB. *Note: It is recommended that the CTFB be used the same day it is prepared.*

Component	Volume/Well	Volume/Strip	Volume/96-well plate
UltraPure Water	73 µL	584 µL	7,008 μL
4X Transcription Factor Binding Assay Buffer	25 µL	200 µL	2,400 µL
Reagent A	1 µL	8 µL	96 µL
300 mM DTT	1 µL	8 µL	96 µL
Total Required	100 µL	800 µL	9,600 µL

Table 1. Preparation of Complete Transcription Factor Binding Assay Buffer

Transcription Factor PPARα Positive Control

One vial contains 150 μ L of clarified cell lysate. This lysate is provided as a positive control for PPARa activation; it is not intended for plate to plate comparisons. The Positive Control provided is sufficient for 15 reactions and will provide a strong signal (>0.5 AU at 450 nm) when used at 10 μ L/well. When using this Positive Control, a decrease in signal may occur with repeated freeze/thaw cycles. It is recommended that the Positive Control be aliquoted at 25 μ L per vial and stored at -80°C to avoid loss in signal from repeated freeze/thaw cycles.

Sample Preparation

• Sample Buffer Preparation

All buffers and reagents below are required for preparation of Nuclear Extract. Alternatively, the Nuclear Extraction Kit (KA1346) can be used to isolate nuclear proteins.

- ✓ Nuclear Extraction PBS (10x)
 - 1.7 M NaCl, 33.53 mM KCl, 126.8 mM Na₂HPO₄, 22.04 mM KH₂PO₄, pH 7.4
- ✓ Nuclear Extraction PBS (1x)

Dilute 100 mL of 10x stock with 900 mL distilled H_2O .

- ✓ Nuclear Extraction Phosphatase Inhibitor Cocktail (50x)
- 0.5 M NaF
- 0.05 M β-glycerophosphate
- 0.05 M Na₃OV₄
- Store at -80°C
- Nuclear Extraction PBS/Phosphatase Inhibitor Solution (1x)
 Add 200 µL of 50x Phosphatase Inhibitor Solution to 10 mL of 1x PBS, mix well, and keep on ice. Make fresh daily.
- ✓ Nuclear Extraction Protease Inhibitor Cocktail (100x)
- 10 mM AEBSF
- 0.5 mM Bestatin
- 0.2 mM Leupeptin Hemisulfate Salt
- 0.15 mM E-64
- 0.1 mM Pepstatin A
- 0.008 mM Aprotinin from Bovine Lung
- Made in DMSO, store at -20°C
- ✓ Nuclear Extraction Hypotonic Buffer (10X)
 100 mM HEPES, pH 7.5, containing 40 mM NaF, 100 µM Na₂MoO₄, and 1 mM EDTA.
 Store at 4°C
- ✓ Complete Hypotonic Buffer (1x)

Prepare as outlined in Table 2. The phosphatase and protease inhibitors lose activity shortly after dilution; therefore any unused 1x Complete Hypotonic Buffer should be discarded.

Reagent	150 mm plate~1.5 x 10 ⁷ cells
Hypotonic Buffer (10X)	100 µL
Phosphatase Inhibitors (50X)	20 µL
Protease Inhibitors (100X)	10 µL
Distilled Water	870 μL
Total Volume	1,000 µL

Table 2. Preparation of Complete Hypotonic Buffer.

- ✓ Nonidet P-40 Assay Reagent (10%)
 Nonidet P-40 or suitable substitute at a concentration of 10% (v/v) in H₂O. Store at room temperature.
- Nuclear Extraction Buffer (2X)
 20 mM HEPES, pH 7.9, containing, 0.2 mM EDTA, 3 mM MgCl₂, 840 mM NaCl, and 20% glycerol (v/v)
 Store at 4°C
- ✓ Complete Nuclear Extraction Buffer (1X)

Prepare as outlined in Table 3. Some of the phosphatase and protease inhibitors lose activity shortly after dilution; therefore any remaining 1X Extraction Buffer should be discarded.

Reagent	150 mm plate~1.5 x 10 ⁷ cells
Nuclear Extraction Buffer (2X)	75 μL
Protease Inhibitors (100X)	1.5 µL
Phosphatase Inhibitors (50X)	3.0 µL
DTT (10 mM)	15 μL
Distilled Water	55.5 μL
Total Volume	150 µL

Table 3. Preparation of Complete Nuclear Extraction Buffer

• Purification of Cellular Nuclear Extracts

The Nuclear Extraction Kit (KA1346) can be used to isolate nuclear proteins. Alternatively, the procedure described below can be used for a 15 mL cell suspension grown in a T75 flask or adherent cells (100 mm dish 80-90% confluent) where 10^7 cells yields approximately 50 µg of nuclear protein.

- 1. Collect $\sim 10^7$ cells in pre-chilled 15 mL tubes.
- 2. Centrifuge suspended cells at 300 x g for five minutes at 4°C.
- 3. Discard the supernatant. Resuspend cell pellet in 5 mL of ice-cold 1x Nuclear Extraction PBS/Phosphatase Inhibitor Solution and centrifuge at 300 x g for five minutes at 4°C. Repeat one time.
- 4. Discard the supernatant. Add 500 μL ice-cold 1X Complete Hypotonic buffer. Mix gently by pipetting and transfer resuspended pellet to pre-chilled 1.5 mL microcentrifuge tube.
- 5. Incubate cells on ice for 15 minutes allowing cells to swell.
- 6. Add 100 μL of 10% Nonidet P-40 (or suitable substitute). Mix gently by pipetting.
- 7. Centrifuge for 30 seconds (pulse spin) at 4°C in a microcentrifuge. Transfer the supernatant which contains the cytosolic fraction to a new tube and store at -80°C.
- 8. Resuspend the pellet in 100 µL ice-cold Complete Nuclear Extraction Buffer (1X) (with protease and phosphatase inhibitors). Vortex 15 seconds at highest setting then gently rock the tube on ice for 15 minutes using a shaking platform. Vortex sample for 30 seconds at highest setting and gently rock for an additional 15 minutes.
- Centrifuge at 14,000 x g for 10 minutes at 4°C. The supernatant contains the nuclear fraction. Aliquot to clean chilled tubes, flash freeze and store at -80°C. Avoid freeze/ thaw cycles. The extracts are ready to use in the assay.

10. Keep a small aliquot of the nuclear extract to quantitate the protein concentration.

Assay Procedure

✓ Plate Set Up

There is no specific pattern for using the wells on the plate. A typical layout of PPARα Positive Control (PC), Competitor dsDNA (C1), and sample of nuclear extracts (S1-S44) to be measured in duplicate is given in Plate Layout. We suggest you record the contents of each well on the plate.

- \checkmark Binding of active PPAR α to the consensus sequence
- Equilibrate the plate and buffers to room temperature prior to opening. Remove the plate from the foil and select the number of strips needed. The 96-well plate supplied with this kit is ready to use.
 NOTE: If you are not using all of the strips at once, place the unused strips back in the plate packet and store at 4°C. Be sure that the packet is sealed with the desiccant inside.
- 2. Prepare the CTFB as outlined in Table 1.
- Add appropriate amount of reagent(s) listed below to the designated wells as follows: Blk - add 100 μL of CTFB to designated wells. NSB - add 100 μL of CTFB to designated wells. Do not add samples or Positive Control to these wells. C1 - Add 80 μL of CTFB prior to adding 10 μL of Transcription Factor PPAR Competitor dsDNA to designated wells. Add 10 μL of control cell lysate, or sample. NOTE: Competitor dsDNA must be added prior to adding the positive control or nuclear extracts.
- S1-S44 Add 90 µL of CTFB followed by 10 µL of Nuclear Extract to designated wells. A protocol for isolation of nuclear extracts is given on section of Purification of Cellular Nuclear Extracts.
 PC Add 90 µL of CTFB followed by 10 µL of Positive Control to appropriate wells.
- 4. Use the cover provided to seal the plate. Incubate overnight at 4°C or one hour at room temperature without agitation (incubation for one hour will result in a less sensitive assay).
- 5. Empty the wells and wash five times with 200 µL of 1X Wash Buffer. After each wash empty the wells in the sink. After the final wash (wash #5), tap the plate on a paper towel to remove any residual Wash Buffer.
- Addition of Transcription Factor PPARα Primary Antibody
- Dilute the Transcription Factor PPARα Primary Antibody 1:100 in 1X ABB as outlined in Table 4 below. Add 100 µL of diluted PPARα Primary Antibody to each well except the Blk wells.

Component	Volume/Well	Volume/Strip	Volume/96-well plate
1X ABB	99 µL	792 µL	9,504 µL
PPARα Primary Antibody	1 µL	8 µL	96 µL
Total required	100 µL	800 µL	9,600 µL

Table 4. Dilution of Primary Antibody

- 2. Use the adhesive cover provided to seal the plate.
- 3. Incubate the plate for one hour at room temperature without agitation.
- 4. Empty the wells and wash each well five times with 200 µL of 1X Wash Buffer. After each wash, empty the contents of the plate into the sink. After the final wash (wash #5), tap the plate three to five times on a paper towel to remove any residual Wash Buffer.
- ✓ Addition of the Transcription Factor Goat Anti-Rabbit HRP Conjugate
- Dilute the Transcription Factor Goat Anti-Rabbit HRP Conjugate 1:100 in 1X ABB as outlined in Table 5 below. Add 100 µL of diluted secondary antibody to each well except the Blk wells.

Component	Volume/Well	Volume/Strip	Volume/96-well plate
1X ABB	99 µL	792 µL	9,504 μL
Goat Anti-Rabbit HRP Conjugate	1 µL	8 µL	96 µL
Total required	100 µL	800 µL	9,600 µL

Table 5. Dilution of secondary antibody

- 2. Use the adhesive cover provided to seal the plate.
- 3. Incubate for one hour at room temperature without agitation.
- 4. Empty the wells and wash five times with 200 µL of 1X Wash Buffer. After each wash, empty the contents of the plate into the sink. After the final wash (wash #5), tap the plate three to five times on a paper towel to remove any residual Wash Buffer.
- ✓ Develop and Read the Plate
- 1. To each well being used add 100 μL of Transcription Factor Developing Solution, which has been equilibrated to room temperature.
- 2. Incubate the plate for 15 to 45 minutes at room temperature with gentle agitation protected from light. Allow the wells to turn medium to dark blue prior to adding Transcription Factor Stop Solution. (This reaction can be monitored by taking absorbance measurements at 655 nm prior to stopping the reactions; An OD₆₅₅ of 0.4-0.5 yields an OD₄₅₀ of approximately 1). Monitor development of sample wells to ensure adequate color development prior to stopping the reaction. *NOTE: Do not overdevelop; however PC wells may need to overdevelop to allow adequate color development in sample wells.*
- 3. Add 100 μL of Stop Solution per well being used. The solution within the wells will change from blue to yellow after adding the Stop Solution.
- 4. Read absorbance at 450 nm within five minutes of adding the Stop Solution. Blank the plate reader according to the manufacturer's requirements using the blank wells.

✓ Summary

NOTE: This procedure is provided as a quick reference for experienced users. Follow the detailed procedure when initially performing the assay.

- 1. Prepare CTFB as described in the Reagent Preparation section, Table 1.
- 2. Add 90 µL CTFB per sample well (80 µL if adding Competitor dsDNA), 100 µL to Blk and NSB wells).
- 3. Add 10 µL of Competitor dsDNA (optional) to appropriate wells.
- 4. Add 10 µL of Positive Control to appropriate wells.
- 5. Add 10 μ L of Sample containing PPAR α to appropriate wells.
- 6. Incubate overnight at 4°C or one hour at room temperature without agitation.
- 7. Wash each well five times with 200 μ L of 1X Wash Buffer.
- 8. Add 100 μL of diluted PPARα Primary Antibody per well (except Blk wells).
- 9. Incubate one hour at room temperature without agitation.
- 10. Wash each well five times with 200 μL of 1X Wash Buffer.
- 11. Add 100 µL of diluted Secondary Antibody (except Blk wells).
- 12. Incubate one hour at room temperature without agitation.
- 13. Wash each well five times with 200 μL of 1X Wash Buffer.
- 14. Add 100 μ L of Developing Solution per well.
- 15. Incubate 15 to 45 minutes with gentle agitation.
- 16. Add 100 μ L of Stop Solution per well.
- 17. Measure the absorbance at 450 nm.

Steps	Reagent	Blk	NSB	PC	C1	S1-S44	
	СТҒВ	100 µL	100 µL	90 µL	80 µL	90 µL	
1 Add reagants	Competitor dsDNA				10 µL		
1. Add reagents	Positive Control			10 µL	10 µL		
	Samples					10 µL	
2. Incubate	Cover plate and incubate overnight at	4°C one ho	our at room	temperatu	ire withou	t agitation	
3. Wash	Wash all wells five times						
4. Add reagents	Primary Antibody 100 μL 100 μL 100 μL 100 μL 100 μL						
5. Incubate	Cover plate and incubate one hour at room temperature without agitation						
6. Wash	Wash all wells five times						
7. Add reagents	Secondary Antibody		100 µL	100 µL	100 µL	100 µL	
8. Incubate	Cover plate and incubate one hour at r	oom tempe	erature with	out agitati	on		
9. Wash	Wash all wells five times						
10. Add reagents	Developer Solution	100 µL	100 µL	100 µL	100 µL	100 µL	
11. Incubate	Monitor development in wells						
12. Add reagents	Stop Solution	100 µL	100 µL	100 µL	100 µL	100 µL	
13. Read	Read plate at wavelength of 450 nm						

Data Analysis

Performance Characteristics

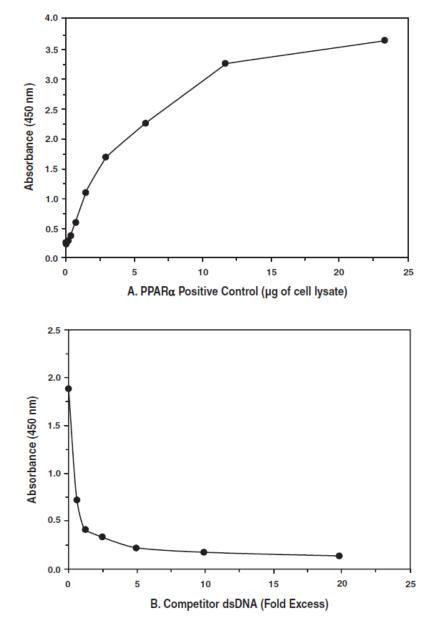


Figure 2. Panel A: Increasing amounts of positive control (total lysate) are assayed for PPARα DAN-binding activity using the PPARA Transcription Factor Assay Kit. Panel B: PPARα DAN-binding assay are performed in the presence of competitive dsDNA. The decrease in signal caused by addition if competitive dsDNA confirms the assay specificity.

✓ Interferences

The following reagents were tested for interference in the assay.

Reagent	Will Interfere (Yes or No)
EGTA (≤1 mM)	No
EDTA (≤0.5 mM)	No
ZnCl (any concentration)	Yes
DTT (between 1 and 5 mM)	No
Dimethylsulfoxide (≤1.5%)	No

Resources

Trouble shooting

Problem	Poss	sible Causes	Reco	ommended Solutions
No signal or weak	1.	Omission of key reagent	1.	Check that all reagents have been added and
signal in control wells 2.		Plate reader settings not		in the correct order. Perform the assay using
		correct		the positive control
	3.	Reagent/reagents expired	2.	Check wavelength setting on plate reader and
	4.	Salt concentrations		change to 450 nm
		affected binding between	3.	Check expiration date on reagents
		DNA and protein	4.	Reduce the amount of nuclear extract used in
	5.	Developing reagent used		the assay, or reduce the amount of salt in the
		cold		nuclear extracts (alternatively can perform
	6.	Developing reagent not		buffer exchange)
		added to correct volume	5.	Prewarm the Developing Solution to room
				temperature prior to use
			6.	Check pipettes to ensure correct amount of
				developing solution was added to wells
High signal in all wells	1.	Incorrect dilution of	1.	Check antibody dilutions and use amounts
		antibody (too high)		outlined in instructions
	2.	Improper/inadequate	2.	Follow the protocol for washing wells using the
		washing of wells		correct number of times and volumes
	3.	Over-developing	3.	Decrease the incubation time when using the
				developing reagent
High background	Inco	rrect dilution of antibody	Chec	ck antibody dilutions and use amounts outlined
(NSB)	(too	high)	in the	e instructions
Weak signal in	1.	Sample concentration is	1.	Increase the amount of nuclear extract used;
sample wells		too low		loss of signal can occur with multiple
	2.	Incorrect dilution of		freeze/thaw cycles of the sample; prepare
		antibody		fresh nuclear extracts and aliquot as outlined
	3.	Salt concentrations		in product insert
		affecting binding between	2.	Check antibody dilutions and use amounts
		DNA and protein		outlined in the instructions
			3.	Reduce the amount of nuclear extract used in
				the assay or reduce the amount of salt in the
				nuclear extracts (alternatively can perform
				buffer exchange)

References

- 1. Olefsky, J.M. Nuclear receptor minireview series. J. Biol. Chem. 276(40), 36863-36864 (2001).
- 2. Gervois, P., Torra, I.P., Fruchart, J.-C., *et al.* Regulation of lipid and lipoprotein metabolism by PPAR activators. *Clin. Chem. Lab. Med.* 38(1), 3-11 (2000).
- Park, K.S., Ciaraldi, T.P., Lindgren, K., *et al.* Troglitazone effects on gene expression in human skeletal muscle of type II diabetes involve up-regulation of peroxisome proliferator-activated receptor-γ. *J. Clin. Endocrinol. Metab.* 83, 2830-2835 (1998).
- 4. Willson, T.M., Brown, P.J., Sternbach, D.D., *et al.* The PPARs: From orphan receptors to drug discovery. *J. Med. Chem.* 43(4), 528-550 (2000).

Plate Layout

12	S41	S42	S43	S44	NSB	РС	BK	C1
11	S41	S42	S43	S44	NSB	РС	BK	C1
10	S33	S34	S35	S36	S37	S38	S39	S40
ი	S33	S34	S35	S36	S37	S38	S39	S40
ω	S25	S26	S27	S28	S29	S30	S31	S32
2	S25	S26	S27	S28	S29	S30	S31	S32
	S17	S18	S19	S20	S21	S22	S23	S24
2	S17	S18	S19	S20	S21	S22	S23	S24
4	6S	S10	S11	S12	S13	S14	S15	S16
e e e e e e e e e e e e e e e e e e e	6S	S10	S11 8	S12	S13	S14	S15	S16
0	S1	83 83	Si S	S4	S5	9S	S7 S	88 88
	S1	S2	S3	S4	S5	Se	S7 \$	S8 S8
	۲ ۲	۵ ۵	с) С		ш	ц	U U	л Г

S1-S44-Sample Wells

NSB-Non-specific Binding Wells

PC- Positive Control Wells

Blk- Blank Wells

C1-Competitor dsDNA Wells