Product Datasheet

Caspase-8 Antibody NB100-56116

Unit Size: 0.05 ml

Store at -20C. Avoid freeze-thaw cycles.

Reviews: 2 Publications: 79

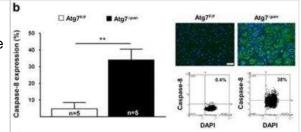
Protocols, Publications, Related Products, Reviews, Research Tools and Images at: www.novusbio.com/NB100-56116

Updated 10/23/2024 v.20.1

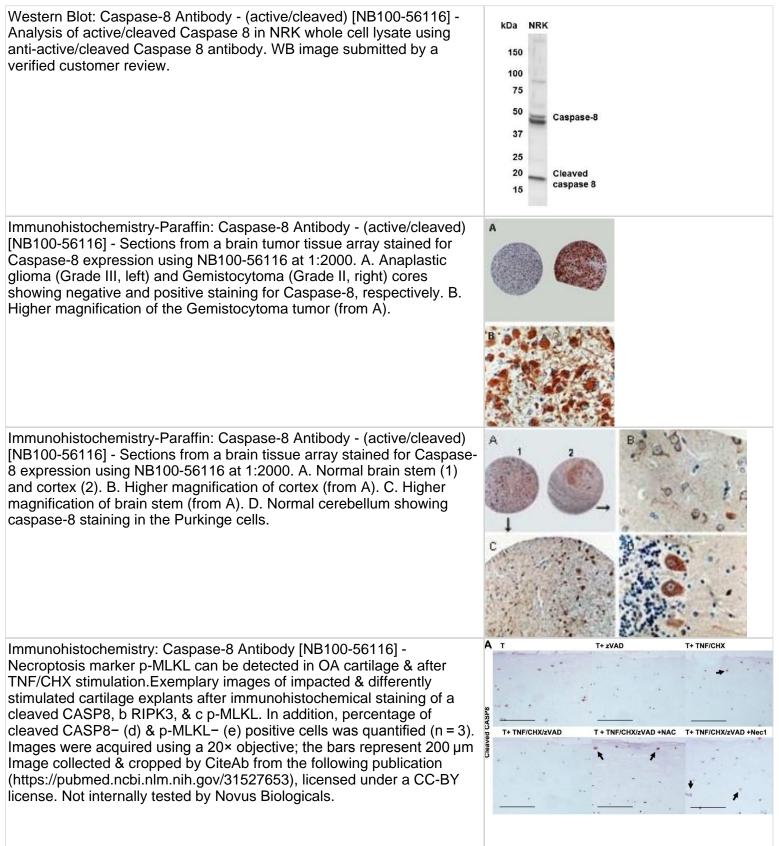
Earn rewards for product reviews and publications.

Submit a publication at www.novusbio.com/publications Submit a review at www.novusbio.com/reviews/destination/NB100-56116

NB100-56116


Caspase-8 Antibody

Cuspuse o / Inibody			
Product Information			
Unit Size	0.05 ml		
Concentration	This product is unpurified. The exact concentration of antibody is not quantifiable.		
Storage	Store at -20C. Avoid freeze-thaw cycles.		
Clonality	Polyclonal		
Preservative	0.05% Sodium Azide		
Isotype	IgG		
Purity	Unpurified		
Buffer	Whole antisera		
Target Molecular Weight	55.4 kDa		
Product Description			
Host	Rabbit		
Gene ID	841		
Gene Symbol	CASP8		
Species	Human, Mouse, Rat, Gerbil		
Reactivity Notes	Possible reactivity with canine species.		
Specificity/Sensitivity	Detects Caspase-8 and cleavage products.		
Immunogen	Recombinant catalytically active human Caspase-8 protein.		
Product Application Details			
Applications	Western Blot, Simple Western, Flow Cytometry, Immunocytochemistry/ Immunofluorescence, Immunohistochemistry, Immunohistochemistry-Frozen, Immunohistochemistry-Paraffin, Immunoprecipitation		
Recommended Dilutions	Western Blot 1:1000-1:2000, Simple Western reported by internal validation, Flow Cytometry, Immunohistochemistry 1:10-1:500, Immunocytochemistry/ Immunofluorescence 1:10-1:500, Immunoprecipitation 1:50-1:200, Immunohistochemistry-Paraffin 1:1000-1:5000, Immunohistochemistry-Frozen 1:10-1:500		
Application Notes	In Simple Western internal validation: Cell lysates as sample type; separated by size; antibody dilution of 1:500; matrix was 12-230 kDa; detected by Chemiluminescence.		


Images

Immunohistochemistry: Caspase-8 Antibody - (active/cleaved) [NB100-56116] - Autophagy-deficient mice showed increased activity of apoptosis and necroptosis. Reduced pancreatic Atg7 level increased the expression of Caspase-8 in 12-week-old Atg7deltapan mice. Caspase-8 quantitation and representative IF microphotographs of Atg7F/F (n=5) and Atg7deltapan (n=5) pancreatic tissue stained for DAPI (blue) and Caspase-8 (green) (1/1000, scale bar=50 um). Image collected and cropped by CiteAb from the following publication (https://www.nature.com/doifinder/10.1038/cddis.2017.313), licensed

(https://www.nature.com/doifinder/10.1038/cddis.2017.313), licensed under a CC-BY license.

Immunohistochemistry: Caspase-8 Antibody [NB100-56116] - Expression of necroptosis- & apoptosis-related markers is elevated in OA cartilage.Necroptosis- & apoptosis-related markers in highly degenerated cartilage tissue of OA patients (ICRS grade \geq 3) were determined by a gene expression analysis of apoptosis & necroptosis markers as well as immunohistochemical analysis (IHC) of b cleaved CASP8, c RIPK3, & d p-MLKL. Macroscopically intact cartilage (ICRS grade \leq 1) served as control. Bars in the IHC images represent 200 µm. Statistical analysis was performed by an unpaired multiple t test; error bars indicate median & range from min to max; n = 13. Significant differences between groups were depicted as: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 Image collected & cropped by CiteAb from the following publication (https://pubmed.ncbi.nlm.nih.gov/31527653), licensed under a CC-BY license. Not internally tested by Novus Biologicals.	Cleaved CASP8 8	ICRS grade ≤1	ICRS grade ≥3
Immunocytochemistry/ Immunofluorescence: Caspase-8 Antibody [NB100-56116] - Analysis of the cell type susceptible to apoptotic cell death in the hypothalamus of IRS2-/- mice. Immunoblots probed with antibodies against GFAP (A) & Tuj-1 (B) in the hypothalamus of wild- type (WT), non-diabetic IRS2-deficient (ND IRS2-/-) & diabetic IRS2- deficient (D IRS2-/-) mice. The average of three independent assays performed in duplicate is shown. Statistical significance by ANOVA: *P<0.05 vs WT mice. n=6/group. (C) Colocalization of TUNEL & GFAP in the hypothalamus of WT, ND IRS2-/- & D IRS2-/- mice. Arrows indicate astrocytes with apoptotic nuclei. (D) Colocalization of cleaved caspase-8 & GFAP, & of cleaved caspase-8 & NeuN, in the hypothalamus of WT, ND IRS2-/- & D IRS2-/- mice. Arrows indicate colocalization of GFAP & cleaved caspase-8. Scale bar: 50 µm; inset, 100 µm. Image collected & cropped by CiteAb from the following publication	ס	Cap-8 GEAP NeuN	ND IRS2* DIRS2* DIRS2 DIRS2 DIRS2 DIRS2* DIRS2 DIRS3 D
(https://journals.biologists.com/dmm/article/doi/10.1242/dmm.023515/25 7174/Increased-oxidative-stress-and-apoptosis-in-the), licensed under a CC-BY license. Not internally tested by Novus Biologicals.			

Publications

Boege Yannick, Malehmir Mohsen, Healy Marc E et al. A Dual Role of Caspase-8 in Triggering and Sensing ProlifeRation-Associated DNA Damage, a Key Determinant of Liver Cancer Development. Cancer Cell 2017-01-01 [PMID: 28898696]

Zhou X, Xie L, Bergmann F et al. The bile acid receptor FXR attenuates acinar cell autophagy in chronic pancreatitis. Cell Death Discov. 2017-06-29 [PMID: 28660075]

Ga-Eun Lee, Geul Bang, Jiin Byun, Cheol-Jung Lee, Weidong Chen, Dohyun Jeung, Hyun-Jung An, Han Chang Kang, Joo Young Lee, Hye Suk Lee, Young-Soo Hong, Dae Joon Kim, Megan Keniry, Jin Young Kim, Jin-Sung Choi, Manolis Fanto, Sung-Jun Cho, Kwang-Dong Kim, Yong-Yeon Cho Dysregulated CREB3 cleavage at the nuclear membrane induces karyoptosis-mediated cell death Experimental & Molecular Medicine 2024-03-13 [PMID: 38480902]

Rochelle Fletcher, Jingshan Tong, Denise Risnik, Brian Leibowitz, Yi-Jun Wang, Fernando Concha-Benavente, Jonathan M. DeLiberty, Donna B. Stolz, Reet K. Pai, Robert L. Ferris, Robert E. Schoen, Jian Yu, Lin Zhang Nonsteroidal anti-inflammatory drugs induce immunogenic cell death in suppressing colorectal tumorigenesis Oncogene 2021-02-05 [PMID: 33603166]

Martin KK, Parvin S, Garraway SM. Peripheral inflammation accelerates the onset of mechanical hypersensitivity after spinal cord injury and engages TNFa signaling mechanisms J. Neurotrauma 2018-12-06 [PMID: 30520675]

Kathryn A. F. Pennel, Phimmada Hatthakarnkul, Colin S. Wood, Guang-Yu Lian, Sara S. F. Al-Badran, Jean A. Quinn, Assya Legrini, Jitwadee Inthagard, Peter G. Alexander, Hester van Wyk, Ahmad Kurniawan, Umar Hashmi, Michael A. Gillespie, Megan Mills, Aula Ammar, Jennifer Hay, Ditte Andersen, Colin Nixon, Selma Rebus, David K. Chang, Caroline Kelly, Andrea Harkin, Janet Graham, David Church, Ian Tomlinson, Mark Saunders, Tim Iveson, Tamsin R. M. Lannagan, Rene Jackstadt, Noori Maka, Paul G. Horgan, Campbell S. D. Roxburgh, Owen J. Sansom, Donald C. McMillan, Colin W. Steele, Nigel B. Jamieson, James H. Park, Antonia K. Roseweir, Joanne Edwards JAK/STAT3 represents a therapeutic target for colorectal cancer patients with stromal-rich tumors Journal of Experimental & Clinical Cancer Research : CR 2024-03-01 [PMID: 38424636]

Y Jin, Y Liu, L Xu, J Xu, Y Xiong, Y Peng, K Ding, S Zheng, N Yang, Z Zhang, L Li, L Tan, H Song, J Fu Novel role for caspase 1 inhibitor VX765 in suppressing NLRP3 inflammasome assembly and atherosclerosis via promoting mitophagy and efferocytosis Cell Death & Disease, 2022-05-31;13(5):512. 2022-05-31 [PMID: 35641492]

Wang S, Chang CW, Huang J et al. Gasdermin C sensitizes tumor cells to PARP inhibitor therapy in cancer models The Journal of clinical investigation 2023-10-26 [PMID: 37883181] (WB, Human)

Luk CT, Chan CK, Chiu F et al. Dual role of caspase 8 in adipocyte apoptosis and metabolic inflammation Diabetes 2023-09-12 [PMID: 37699387]

Montecillo-Aguado M, Tirado-Rodriguez B, Antonio-Andres G et al. Omega-6 Polyunsaturated Fatty Acids Enhance Tumor Aggressiveness in Experimental Lung Cancer Model: Important Role of Oxylipins International Journal of Molecular Sciences 2022-05-31 [PMID: 35682855] (Immunohistochemistry)

Zhang L, Zhu D, Jiang J et al. The ubiquitin E3 ligase MDM2 induces chemoresistance in colorectal cancer by degradation of ING3 Carcinogenesis 2023-06-06 [PMID: 37279970]

Subramanya S, Fernando R, Goswami M et al. Flow cytometric method for the detection and quantification of retinal cell death and oxidative stress Experimental eye research 2023-06-29 [PMID: 37393050] (FLOW, Mouse)

More publications at <u>http://www.novusbio.com/NB100-56116</u>

www.novusbio.com

Novus Biologicals USA

10730 E. Briarwood Avenue Centennial, CO 80112 USA Phone: 303.730.1950 Toll Free: 1.888.506.6887 Fax: 303.730.1966 nb-customerservice@bio-techne.com

Bio-Techne Canada

21 Canmotor Ave Toronto, ON M8Z 4E6 Canada Phone: 905.827.6400 Toll Free: 855.668.8722 Fax: 905.827.6402 canada.inquires@bio-techne.com

Bio-Techne Ltd

19 Barton Lane Abingdon Science Park Abingdon, OX14 3NB, United Kingdom Phone: (44) (0) 1235 529449 Free Phone: 0800 37 34 15 Fax: (44) (0) 1235 533420 info.EMEA@bio-techne.com

General Contact Information

www.novusbio.com Technical Support: nb-technical@biotechne.com Orders: nb-customerservice@bio-techne.com General: novus@novusbio.com

Products Related to NB100-56116

NBP3-11853	Jurkat Staurosporine Treated / Untreated Cell Lysate
HAF008	Goat anti-Rabbit IgG Secondary Antibody [HRP]
NB7160	Goat anti-Rabbit IgG (H+L) Secondary Antibody [HRP]
NBP2-24891	Rabbit IgG Isotype Control

Limitations

This product is for research use only and is not approved for use in humans or in clinical diagnosis. Primary Antibodies are guaranteed for 1 year from date of receipt.

For more information on our 100% guarantee, please visit www.novusbio.com/guarantee

Earn gift cards/discounts by submitting a review: www.novusbio.com/reviews/submit/NB100-56116

Earn gift cards/discounts by submitting a publication using this product: www.novusbio.com/publications

www.novusbio.com

