PRODUCT INFORMATION & MANUAL Human IL-7 Valukine™ ELISA **Catalog Number: VAL162** For the quantitative determination of natural and recombinant human IL-7 concentrations For research use only. Not for diagnostic or therapeutic procedures. Bio-Techne China Co. Ltd P: +86 (21) 52380373 P: 8009881270 F: +86 (21) 52381001 info.cn@bio-techne.com Please refer to the kit label for expiry date. Novus kits are guaranteed for 3 months from date of receipt Version 202307.2 # **TABLE OF CONTENTS** | I. | BACKGROUND | 2 | |-------|----------------------------|----| | II. | OVERVIEW | 3 | | III. | ADVANTAGES | 4 | | IV. | EXPERIMENT | 6 | | V. | KIT COMPONENTS AND STORAGE | 7 | | VI. | PREPARATION | 10 | | VII. | ASSAY PROCEDURE | 12 | | VIII. | REFERENCES | 14 | ## I. BACKGROUND Interleukin 7 (previously referred to as lymphopoietin-1 or pre-B-cell growth factor) was originally discovered as a growth factor produced by stromal cells. It is capable of supporting the proliferation of precursor B-lymphocytes (B220+, surface immunoglobulin negative) (1). Mouse IL-7 cDNA was isolated from a stromal cell line by expression cloning and subsequently used as a probe for the cloning of human IL-7 cDNA from a liver adenocarcinoma cell line (2, 3). In addition to being produced by bone marrow stromal cells, IL-7 mRNA has also been detected in the spleen, thymus, and kidney, as well as in keratinocytes (4, 5). Both mouse and human IL-7 have been shown to have pleiotropic effects on a variety of cell types, including cells of the B-, T-, NK-, and myeloid lineages. The biology of IL-7 has been reviewed (4). The cDNAs for human and mouse IL-7 encode precursor proteins with a 25 amino acid (aa) residue signal peptide that is cleaved to form mature proteins containing essential disulfide bonds and multiple potential sites for N-linked glycosylation. The mature forms of human and mouse IL-7 contain 152 and 129 aa residues, respectively. The greater size of human IL-7 is due, in part, to a contiguous 19 aa residue stretch that is absent in mouse IL-7. At the aa sequence level, there is approximately 60% identity between human and mouse IL-7. Human IL-7 exhibits no species-specificity and is equally active on both human and mouse cells. Although mouse IL-7 is active on human T cells, it was reported to be inactive on human pre-B cells (4, 6). IL-7 is a pleiotropic cytokine with multiple bioactivities on a variety of cell types (4). Among B-lineage cells, pro-B and pre-B cells, but not mature B cells, can proliferate in response to IL-7 alone. IL-7 may play an important role in T cell development in the thymus. IL-7 has been reported to induce proliferation of immature and mature human and mouse thymocytes. IL-7 was also shown to promote the generation of phenotypically mature CD45RA+ human thymocytes in vitro (7), and to induce the V(D)J rearrangement of the T cell receptor β gene in mouse fetal thymocytes (8). In the presence of co-mitogens such as Con A or PHA, IL-7 can stimulate the proliferation of peripheral blood T cells. IL-7 can support the differentiation of cytotoxic T lymphocytes and promote the generation of lymphokine-activated killer cells. Among myeloid lineage cells, IL-7 can up-regulate the production of pro-inflammatory cytokines and stimulate the tumoricidal activity of monocytes/macrophages (4). ## **II. OVERVIEW** #### A. PRINCIPLE OF THE ASSAY This assay employs the quantitative sandwich enzyme immunoassay technique. An antibody specific for human IL-7 has been pre-coated onto a microplate. Standards and samples are pipetted into the wells and any human IL-7 present is bound by the immobilized antibody. After washing away any unbound substances, a biotinylated detection antibody specific for human IL-7 are pipetted into the wells. After washing away any unbound substances, streptavidin-HRP are pipetted into the wells. Following a wash to remove any unbound reagent, a substrate solution is added to the wells and color develops in proportion to the amount of human IL-7 bound in the initial step. The color development is stopped, and the intensity of the color is measured. #### **B. LIMITATIONS OF THE PROCEDURE** - FOR RESEARCH USE ONLY NOT FOR USE IN DIAGNOSTIC PROCEDURES. - This kit is suitable for cell culture supernate and human serum. - The kit should not be used beyond the expiration date on the kit label. - Do not mix or substitute reagents with those from other lots or sources. - If samples generate values higher than the highest standard, dilute the samples with Calibrator Diluent and repeat the assay. - Any variation in operator, pipetting technique, washing technique, incubation time or temperature, and kit age can cause variation in binding. ## III. ADVANTAGES #### A. PRECISION **Intra-assay Precision** (Precision within an assay) Three samples were tested twenty times on one plate to assess intra-assay precision. Inter-assay Precision (Precision between assays) Three samples were tested in twenty separate assays to assess inter-assay precision. | | Intra-assay Precision | | | Inter-a | ssay Pred | cision | |--------------------|-----------------------|------|-------|---------|-----------|--------| | Sample | 1 | 2 | 3 | 1 | 2 | 3 | | Mean (pg/mL) | 16.2 | 63.6 | 244.1 | 16.2 | 63.2 | 244.3 | | Standard Deviation | 0.6 | 1.5 | 11 | 0.6 | 1.7 | 10.0 | | CV% | 4.0% | 2.3% | 4.5% | 4.0% | 2.6% | 4.1% | #### **B. RECOVERY** The recovery of human IL-7 spiked to different levels throughout the range of the assay in cell culture media was evaluated. The recovery ranged from 108-127.9% with an average of 119.6%. The recovery of human IL-7 spiked to different levels throughout the range of the assay in human serum was evaluated. The recovery ranged from 79.7-120.1% with an average of 103.8%. #### C. SENSITIVITY The minimum detectable dose (MDD) of human IL-7 is typically less than 0.209 pg/mL. The MDD was determined by adding two standard deviations to the mean optical density value of twenty zero standard replicates and calculating the corresponding concentration. #### D. CALIBRATION This immunoassay is calibrated against a highly purified *E. coli*-expressed recombinant human IL-7 produced at R&D Systems. #### **E. LINEARITY** To assess the linearity of the assay, different samples were containing or spiked with high concentrations of human IL-7 and diluted with Calibrator Diluent (1×) to produce samples with values within the dynamic range of the assay. | Dilution | Average % of Expected | Range (%) | |----------|-----------------------|------------| | 1:2 | 101.4 | 92.7-112.1 | | 1:4 | 1:4 96.9 | | | 1:8 | 1:8 98.8 | | | 1:16 | 99.1 | 87.7-110.4 | #### F. SAMPLE VALUES **Serum -** Seven human serum samples were evaluated for the presence of human IL-7 in this assay. All samples measured ranged from 14.1 to 66.9 pg/mL with an average of 29 pg/mL. ## G. SPECIFICITY The following factors prepared at 50 ng/mL were assayed and exhibited no cross-reactivity or interference. | Recombinant human | Recombinant mouse | | |-------------------|-------------------|--| | IL-7 R | IL-7 | | | | IL-7 Rα | | # IV. EXPERIMENT ## **EXAMPLE STANDARD** The standard curve is provided for demonstration only. A standard curve should be generated for each set of samples assayed. | pg/mL | OD | Average | Corrected | |-------|--|--|-----------| | 0 | 0.050 | 0.050 | | | U | 0.050 | 0.030 | 4 | | 7.8 | 0.133 | 0.124 | 0.084 | | 7.0 | 0.134 | 0.134 | 0.084 | | 15.6 | 0.210 | 0.050
0.134
0.211
0.385
0.684
1.195
1.860
2.453 | 0.161 | | 15.0 | 0.211 | | 0.101 | | 21.2 | 0.379 | 0.134
0.211
0.385
0.684
1.195 | 0.225 | | 31.3 | 31.3 0.379
0.390 0.385
62.5 0.682 0.684 | 0.383 | 0.335 | | 62.5 | 0.682 | 0.604 | 0.634 | | 02.5 | 0.050
0.050
0.133
0.134
0.210
0.211
0.379
0.390
0.682
0.686
1.168
1.168
1.222
1.847
1.860
2.450 | 0.034 | | | 105 | 0.211
0.379
0.390
0.682
0.686
0.684
125
1.168
1.222
1.847
1.860 | 1.145 | | | 125 | | 1.145 | | | 250 | 1.847 | 1.860 | 1.010 | | 250 | 1.872 | | 1.810 | | 500 | 2.450 | 0.450 | 2.402 | | 500 | 2.455 | 2.455 | 2.403 | # V. KIT COMPONENTS AND STORAGE ## A. MATERIALS PROVIDED | Parts | Description | Size | |----------------------------------|--|----------| | Human IL-7 Microplate | 96 well polystyrene microplate (12 strips of 8 wells) coated with a mouse antibody against human IL-7. | 1 plate | | Human IL-7 Standard | Human IL-7 in a buffered protein base; lyophilized. Refer to the vial label for reconstitution volume. | 2 vials | | Human IL-7 Detection
Antibody | Biotinylated human IL-7 antibody, lyophilized. Refer to the vial label for reconstitution volume. | 1 vial | | Calibrator Diluent (2×) | Concentrated buffered diluent used to dilute standard and samples. | 1 vial | | Streptavidin-HRP A (200×) | 200× Streptavidin conjugated to horseradish peroxidase. | 1 vial | | Reagent Diluent (10×) | A 10× concentrated buffered protein base used to dilute Detection Antibody and HRP. | 1 vial | | Wash Buffer
Concentrate (25×) | A 25× concentrated solution of buffered surfactant with preservatives. | 1 vial | | TMB Substrate | TMB ELISA Substrate Solution | 1 vial | | Stop Solution | 2 N sulfuric acid. | 1 vial | | Plate Sealers | Adhesive strip. | 3 strips | ## **B. STORAGE** | Unopened Kit | Store at 2-8 °C. Do not use past kit expiration date. | | | | |---------------|---|--|--|--| | | Streptavidin-HRP A | | | | | | Diluted Wash Solution | | | | | | TMB Substrate | May be stored for up to 1 month at 2-8 °C.* | | | | | Stop Solution | | | | | | Standard | Prepare fresh for each assay. | | | | Opened/ | Detection Antibody | Aliquot and store for up to 1 month at -20 °C ir a manual defrost freezer. * | | | | Reconstituted | Reagent Diluent (10×) | May be stored for up to 1 month at 2-8 °C.* | | | | Reagents | | Use and discard diluted Reagent Diluent (1×). Prepare fresh for each assay. | | | | | | May be stored for up to 1 month at 2-8 °C.* | | | | | Calibrator Diluent (2×) | Use and discard diluted Calibrator Diluent (1×). Prepare fresh for each assay. | | | | | Microplate Wells | Return unused wells to the foil pouch containing the desiccant pack, reseal along entire edge of zip-seal. May be stored for up to 1 month at 2-8 °C.* | | | ^{*} Provided this is within the expiration date of the kit. ## C. OTHER SUPPLIES REQUIRED - Microplate reader capable of measuring absorbance at 450 nm, with the correction wavelength set at 540 nm or 570 nm. - Pipettes and pipette tips. - Deionized or distilled water. - Squirt bottle, manifold dispenser, or automated microplate washer. - 500 mL graduated cylinder. #### D. PRECAUTION - Some components in this kit contain a preservative which may cause an allergic skin reaction. Avoid breathing mist. - The Stop Solution provided with this kit is an acid solution. Wear protective gloves, clothing, eye, and face protection. Wash hands thoroughly after handling. #### VI. PREPARATION #### A. SAMPLE COLLECTION AND STORAGE **Cell Culture Supernates** - Remove particulates by centrifugation and assay immediately or aliquot and store samples at ≤ -20°C. Avoid repeated freeze-thaw cycles. Samples may require dilution with Calibrator Diluent (1×). **Serum -** Use a serum separator tube (SST) and allow samples to clot for 30 minutes at room temperature before centrifugation for 15 minutes at 1000 x g. Remove serum and assay immediately or aliquot and store samples at \leq -20°C. Avoid repeated freeze-thaw cycles. #### **B. REAGENT PREPARATION** **Note:** Bring all reagents to room temperature before use. **Wash Buffer** - If crystals have formed in the concentrate, warm to room temperature and mix gently until the crystals have completely dissolved. Dilute 20 mL of Wash Buffer Concentrate (25×) into deionized or distilled water to prepare 500 mL of Wash Buffer. Calibrator Diluent (1x) - Use deionized or distilled water to prepare Calibrator Diluent (1x). **Reagent Diluent (1x) -** Use deionized or distilled water to prepare Reagent Diluent (1x). **Detection Antibody - Centrifuge briefly before opening. Reconstitution Volume refer to vial label with Reagent Diluent (1×).** Aliquot and store if needed. Dilute stock solution in Reagent Diluent (1×) to the working concentration of 50 ng/mL. Prepare at least 15 minutes prior to use. **Streptavidin-HRP A (1x) - Centrifuge briefly before opening.** Dilute to the working concentration specified on the vial label using Reagent Diluent (1x). Human IL-7 Standard - Centrifuge briefly before opening. Refer to the vial label for the reconstitution volume*. This reconstitution produces a stock solution of 1000 pg/mL. Allow the standard to sit for a minimum of 15 minutes with gentle agitation prior to making dilutions. *if you have any question, please seek help from our Technical Support. Pipette 300 μL of the appropriate Calibrator Diluent (1×) into each tube. Use the stock solution to produce a dilution series (below). Mix each tube thoroughly before the next transfer. The 500 pg/mL standard serves as the high standard. The Calibrator Diluent (1×) serves as the zero standard (0 pg/mL). #### C. TECHNICAL HINTS - When mixing or reconstituting protein solutions, always avoid foaming. - To avoid cross-contamination, change pipette tips between additions of each standard level, between sample additions, and between reagent additions. Also, use separate reservoirs for each reagent. - It is recommended that the samples be pipetted within 15 minutes. - To ensure accurate results, proper adhesion of plate sealers during incubation steps is necessary. - TMB Substrate should remain colorless until added to the plate. Keep Substrate Solution protected from light. Substrate Solution should change from colorless to gradations of blue. - Stop Solution should be added to the plate in the same order as the Substrate Solution. The color developed in the wells will turn from blue to yellow upon addition of the Stop Solution. Wells that are green in color indicate that the Stop Solution has not mixed thoroughly with the Substrate Solution. #### VII. ASSAY PROCEDURE **Note:** Bring all reagents and samples to room temperature before use. It is recommended that all samples and standards be assayed in duplicate. - 1. Prepare all reagents and working standards as directed in the previous sections. - 2. Remove excess microplate strips from the plate frame, return them to the foil pouch containing the desiccant pack, and reseal. - Add 100 μL of standard, or prepared sample per well. Cover with the adhesive strip provided. Incubate for 2 hours at room temperature. A plate layout is provided for a record of standards and samples assayed. (Samples may require dilution. See Sample Preparation section.) - 4. Aspirate each well and wash, repeating the process three times for a total of four washes. Wash by filling each well with Wash Solution (400 μL) using a squirt bottle, manifold dispenser, or autowasher. Complete removal of liquid at each step is essential to good performance. After the last wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against clean paper towels. - Add 100 μL of the Detection Antibody diluted in Reagent Diluent, to each well. Cover with a new adhesive strip and incubate for 2 hours at room temperature. - 6. Repeat the aspiration/wash as in step 4. - Add 100 μL of the working dilution of Streptavidin-HRP A to each well. Cover the plate and incubate for 20 minutes at room temperature. Avoid placing the plate in direct light. - 8. Repeat the aspiration/wash as in step 4. - 9. Add 100 µL of TMB Substrate to each well. Incubate for 30 minutes at room temperature. **Avoid placing the plate in direct light**. - 10. Add 50 µL of Stop Solution to each well. Gently tap the plate to ensure thorough mixing. - 11. Determine the optical density of each well within 10 minutes, using a microplate reader set to 450 nm. If wavelength correction is available, set to 540 nm or 570 nm. If wavelength correction is not available, subtract readings at 540 nm or 570 nm from the readings at 450 nm. This subtraction will correct for optical imperfections in the plate. Readings made directly at 450 nm without correction may be higher and less accurate. #### 12. CALCULATION OF RESULTS Average the duplicate readings for each standard, control, and sample and subtract the average zero standard optical density (O.D.). Create a standard curve by reducing the data using computer software capable of generating a four-parameter logistic (4-PL) curve-fit. As an alternative, construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on the graph. The data may be linearized by plotting the log of the human IL-7 concentrations versus the log of the O.D. and the best fit line can be determined by regression analysis. This procedure will produce an adequate but less precise fit of the data. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor. ## VIII. REFERENCES - 1. Namen, A.E. et al. (1988) J. Exp. Med. 167:988. - 2. Namen, A.E. et al. (1988) Nature 333:571 - 3. Goodwin, R.G. et al. (1989) Proc. Natl. Acad. Sci. USA 86:302. - 4. Appasamy, P.M. (1993) Cancer Invest. 11:487. - 5. Heufler, C. et al. (1993) J. Exp. Med. 178:1109. - Goodwin, R.G. and A.E. Namen (1992) "Interleukin 7" in Human Cytokines, Handbook for Basic and Clinical Research, Aggarwal, B.B. and J.U. Gutterman eds. - 7. Vollger, L.W. and C.H. Uittenbogart (1993) Cytokine 5:157. - 8. Muegge, K. et al. (1993) Science 261:93. ## **PLATE LAYOUT** Use this plate layout to record standards and samples assayed. # 产品信息及操作手册 Human IL-7 Valukine™ ELISA 试剂盒 目录号: VAL162 适用于定量检测天然和重组人 IL-7 的浓度 科研专用,不可用于临床诊断 ## Bio-Techne China Co. Ltd P: +86 (21) 52380373 P: 8009881270 F: +86 (21) 52381001 info.cn@bio-techne.com 有效期详见试剂盒包装标签 Novus 试剂盒确保在你收货日期 3 个月内有效 版本号 202307.2 # 目录 | I. | 背景 | .18 | |-------|----------|-----| | II. | 概述 | .19 | | III. | 优势 | .20 | | IV. | 实验 | .22 | | V. | 试剂盒组成及储存 | 23 | | VI. | 实验前准备 | 25 | | VII. | 操作步骤 | 27 | | VIII. | 参考文献 | 28 | ## 1. 背景 白细胞介素-7(以前称为淋巴细胞生成素-1或前B细胞生长因子)最初被发现是由基质细胞产生的一种生长因子。它能够支持前体B淋巴细胞(B220+,表面免疫球蛋白阴性)的增殖(1)。通过表达克隆从基质细胞系分离小鼠IL-7 cDNA,随后用作从肝腺癌细胞系克隆人IL-7 cDNA的探针(2,3)。除了由骨髓基质细胞产生外,在脾脏、胸腺和肾脏以及角质形成细胞中也检测到IL-7 mRNA (4,5)。小鼠和人类IL-7均显示对多种细胞类型具有多效性作用,包括B、T、NK和髓系细胞。IL-7的生物学特性已有综述(4)。 人和小鼠IL-7的cDNA编码具有25个氨基酸(aa) 残基信号肽的前体蛋白,该信号肽被切割形成含有必需二硫键和多个N-连接糖基化潜在位点的成熟蛋白质。人和小鼠IL-7的成熟形式分别含有152和129个aa残基。人IL-7比小鼠IL-7大,部分原因是由于小鼠IL-7中不存在连续的19个aa残基延伸。在aa序列水平上,人和小鼠IL-7之间约有60%的同源性。人IL-7不表现出物种特异性,对人和小鼠细胞具有同等活性。尽管小鼠IL-7在人类T细胞上具有活性,但据报道在人类前B细胞上不具有活性(4,6)。 IL-7是一种对多种细胞类型具有多种生物活性的多效性细胞因子(4)。在B系细胞中,pro-B细胞和pre-B细胞,而不是成熟B细胞,可以单独对IL-7产生增殖反应。IL-7可能在胸腺T细胞发育中起重要作用。据报道,IL-7可诱导未成熟和成熟的人和小鼠胸腺细胞增殖。IL-7也被证明在体外促进表型成熟的CD45RA+人胸腺细胞的生成,并诱导小鼠胎儿胸腺细胞中T细胞受体β基因的V(D)J重排(7,8)。在Con A或PHA等共有丝分裂原存在的情况下,IL-7可刺激外周血T细胞的增殖。IL-7可支持细胞毒性T淋巴细胞的分化,促进淋巴因子激活的杀伤细胞的生成。在髓系细胞中,IL-7可上调促炎细胞因子的产生,并刺激单核细胞/巨噬细胞的杀瘤活性(4)。 ## Ⅱ. 概述 ## A. 检测原理 本实验采用双抗体夹心ELISA法。小鼠抗人IL-7抗体包被于微孔板上,样品和标准品中的人IL-7会与固定在板上的抗体结合,游离的成分被洗去;接着加入生物素化的抗人IL-7检测抗体进行孵育,洗涤去除未结合的物质后,加入链霉亲和素标记的辣根过氧化物酶(streptavidin-HRP)孵育。洗涤去除未结合的试剂后,加入TMB底物溶液。溶液颜色与结合的目标蛋白成正比;加入终止液;用酶标仪测定吸光度。 ## B. 检测局限 - ◆ 仅供科研使用,不可用于体外诊断; - ◆ 该试剂盒适用于细胞培养上清样本和人血清样本; - ◆ 请在试剂盒有效期内使用; - ◆ 不同试剂盒及不同批号试剂盒的组分不能混用; - ◆ 样本值若大于标准曲线的最高值,应将样本用标准品稀释液(1×)稀释后重新检测; - ◆ 检测结果的不同可由多种因素引起,包括实验人员的操作、移液器的使用方式、洗板 技术、反应时间或温度、试剂盒的效期等。 ## Ⅲ. 优势 ## A. 精确度 板内精确度(同一板内不同孔间的精确度) 已知浓度的三个样本,在同一板内分别检测20次,以确定板内精确度。 **板间精确度**(不同板之间的精确度) 已知浓度的三个样本,在不同板中分别检测20次,以确定板间精确度。 | | 板内精确度 | | 7 | 扳间精确度 | Ę | | |-------------|-------|------|-------|-------|------|-------| | 样本 | 1 | 2 | 3 | 1 | 2 | 3 | | 平均值 (pg/mL) | 16.2 | 63.3 | 244.1 | 16.2 | 63.2 | 244.3 | | 标准差 | 0.6 | 1.5 | 11 | 0.6 | 1.7 | 10 | | CV% | 4.0% | 2.3% | 4.5% | 4.0% | 2.6% | 4.1% | #### B. 回收率 在细胞培养基样本中掺入检测范围内不同水平的人IL-7,测定其回收率。回收率范围在108-127.9%,平均回收率在119.6%。 在人血清样本中掺入检测范围内不同水平的人IL-7,测定其回收率。回收率范围在79.7-120.1%,平均回收率在103.8%。 ## C. 灵敏度 人IL-7的最低可测剂量(MDD)一般小于0.209pg/mL。 MDD是根据20个重复的零标准品孔的吸光度值的平均值加两倍标准差计算得到的相对应浓度。 ## D. 校正 此ELISA试剂盒经由R&D Systems生产的高纯度大肠杆菌表达的重组人IL-7蛋白所校正。 ## E. 线性 不同的样本中含有或掺入高浓度的人IL-7, 然后用标准品稀释液(1×)将样本稀释到检测范围内,测定其线性。 | 稀释倍数 | 平均值(%) | 范围 (%) | |------|-----------|------------| | 1:2 | 101.4 | 92.7-112.1 | | 1:4 | 96.9 | 88.0-105.8 | | 1:8 | 98.8 | 89.0-111.6 | | 1:16 | 1:16 99.1 | | ## F. 样本预值 血清样本 - 使用本试剂盒检测了7份人血清样本中人IL-7的水平。7份样本的检测值在 14.1-66.9pg/mL之间,平均值为29pg/mL。 ## G. 特异性 将以下因子配制成50ng/mL的浓度来检测没有观察到明显的交叉反应或干扰。 | Recombinant human | Recombinant mouse | | |-------------------|-------------------|--| | IL-7 R | IL-7 | | | | IL-7 Rα | | # IV. 实验 # 标准曲线实例 该标准曲线数据仅供参考,每次实验应绘制其对应的标准曲线。 | pg/mL | OD | Average | Corrected | | |-----------------------------|---|-----------|-----------|-------| | 0 | 0.050 | 0.050 | 20110 | | | U | 0.050 | 0.050 | - | | | 7.0 | 0.133 | 0.134 | 0.084 | | | 1.0 | 0.134 | 0.134 | 0.084 | | | 15.6 | 0.210 | 0.211 | 0.161 | | | 15.0 | 0.050
0.133
0.134
0.210
0.211
1.3 0.379
0.390
2.5 0.682
0.686
1.168
1.222 | 0.211 | 0.101 | | | 21 2 | 0.379 | 0.205 | 0.335 | | | 31.3 | 0.390 | 0.385 | 0.333 | | | 62.5 | 0.682 | 0.604 | 0.684 0.6 | 0.634 | | 15.6
31.3
62.5
125 | 0.686 | 0.084 | 0.034 | | | 125 | 1.168 | 1.195 | 1.145 | | | 125 | 1.222 | 1.195 | 1.145 | | | 250 | 1.847 | 1.860 1.8 | 1.810 | | | 250 | 1.872 | 1.800 | 1.810 | | | 500 | 2.450 | 2.452 | 2.403 | | | 500 | 2.455 | 2.453 | 2.403 | | # V. 试剂盒组成及储存 # A. 试剂盒组成 | 组成 | 描述 | 规格 | |-------------------------------|-------------------------------------|------| | Human IL-7 Microplate | 包被小鼠抗人 IL-7 抗体的 96 孔聚苯乙烯 板,8 孔×12 条 | 1 块板 | | Human IL-7 Standard | 标准品(冻干粉),参考瓶身标签进行重
溶 | 2 瓶 | | Human IL-7 Detection antibody | 生物素化的人 IL-7 检测抗体, 冻干粉, 参考瓶身标签进行重溶 | 1 瓶 | | Streptavidin-HRP A (200×) | 200×浓缩的链霉亲和素标记的 HRP | 1 瓶 | | Reagent Diluent (10×) | 浓缩的试剂稀释液(10×) | 1 瓶 | | Calibrator Diluent (2×) | 浓缩的标准品稀释液(2×) | 1 瓶 | | Wash Buffer Concentrate (25×) | 浓缩洗涤缓冲液(25×) | 1 瓶 | | TMB Substrate | TMB ELISA 底物溶液 | 1 瓶 | | Stop Solution | 终止液 | 1 瓶 | | Plate Sealers | 封板膜 | 3张 | ## B. 试剂盒储存 | 未开封试剂盒 | 2-8℃储存;请在试剂盒有效期内使用 | | | |--------------|--------------------|--|--| | | 链霉亲和素-HRP A | - 2-8℃储存,最多 30 天* | | | | 洗涤缓冲液(1×) | | | | | TMB 底物溶液 | | | | | 终止液 | | | | | 标准品 | 使用时新鲜配制* | | |
 己打开,稀释 | 检测抗体 | 分装, -20℃储存,最多 30 天* | | | 或重溶的试剂 | | 2-8℃储存,最多30天* | | | | 标准品稀释液(2×) | 请每次使用新鲜配制的 1× 标准品稀释液,
多余的丢弃 | | | | | 2-8℃储存,最多 30 天* | | | | 试剂稀释液(10×) | 请每次使用新鲜配制的 1× 试剂稀释液,多
余的丢弃 | | | | 包被的微孔板条 | 将未用的板条放回带有干燥剂的铝箔袋内,
密封: 2-8℃储存,最多30天* | | ^{*}必须在试剂盒有效期内 ## C. 实验所需自备试验器材 - ◆ 酶标仪(可测量450nm检测波长的吸收值及540nm或570nm校正波长的吸收值) - ◆ 高精度加液器及一次性吸头 - ◆ 蒸馏水或去离子水 - ◆ 洗瓶 (喷瓶)、多通道洗板器或自动洗板机 - ◆ 500mL量筒 ## D. 注意事项 - ◆ 试剂盒中的一些组分含有防腐剂,可能引起皮肤过敏反应,避免吸入。 - ◆ 试剂盒中的终止液是酸性溶液,使用时请做好眼睛、手、面部及衣服的防护。使用后 请彻底洗手。 ## VI. 实验前准备 ## A. 样品收集及储存 细胞培养上清液: 颗粒物应离心去除; 立刻检测样本。样本收集后若不及时检测,需按一次使用量分装,冻存于-20℃冰箱内,避免反复冻融。样本可能需要用标准品稀释液(1×)稀释。 血清样本:用血清分离管(SST)分离血清。使血样室温凝集30分钟,然后1000×g离心15分钟。吸取血清样本之后即刻用于检测,或者分装,-20℃贮存备用。避免反复冻融。 #### B. 检测前准备工作 #### 使用前请将所有试剂放置于室温 洗涤液:从冰箱中取出的浓缩洗涤液可能有结晶,属于正常现象;放置室温,轻摇混匀,待结晶完全溶解后再配制洗涤液。可将20mL浓缩洗涤液用去离子水或蒸馏水稀释配制成500mL工作浓度的洗涤液。 标准品稀释液(1×): 使用去离子水或蒸馏水稀释配制成标准品稀释液(1×)。 试剂稀释液(1×): 使用去离子水或蒸馏水稀释配制成试剂稀释液(1×)。 **检测抗体:** 开盖前请瞬时离心。参考检测抗体瓶标签指示,用试剂稀释液(1×)将冻干粉进行重溶。再用试剂稀释液(1×)稀释至工作浓度50ng/mL,至少在使用前15分钟准备。 **链霉亲和素- HRP A:** 开**盖前请瞬时离心。**用试剂稀释液(1×)将链霉亲和素- HRP A(200×) 稀释至工作浓度链霉亲和素- HRP A(1×)。 Human IL-7标准品: 开盖前请瞬时离心。冻干标准品的重溶体积请参考瓶身标签,得到浓度为1000pg/mL标准品母液。轻轻震摇至少15分钟,使其充分溶解。 *如有疑问,请咨询我们的技术支持。 向各稀释管中加入300μL标准品稀释液(1×)。将标准品母液参照下图做系列稀释,每管须充分混匀后再移液到下一管。500pg/mL管作标准曲线最高点,标准品稀释液(1×)可用作标准品零点(0pg/mL)。 ## C. 技术小提示 - ◆ 当混合或重溶蛋白液时,尽量避免起沫; - ◆ 为了避免交叉污染,配制不同浓度标准品、上样、加不同试剂都需要更换枪头。另外 不同试剂请分别使用不同的移液槽; - ◆ 建议15分钟内完成一块板的上样; - ◆ 每次孵育时,正确使用封板膜可保证结果的准确性; - ◆ TMB底物溶液在上板前应为无色,请避光保存;加入微孔板后,将由无色变成不同深度的蓝色; - 终止液上板顺序应同TMB底物溶液上板顺序一致;加入终止液后,孔内颜色由蓝变黄;若孔内有绿色,则表明孔内液体未混匀,请充分混合。 ## VII. 操作步骤 #### 使用前请将所有试剂和样本放置于室温,建议所有的实验样本和标准品做复孔检测 - 1. 按照上一节的说明,准备好所有需要的试剂和标准品; - 2. 从已平衡至室温的密封袋中取出微孔板,未用的板条请放回铝箔袋内,重新封口; - 3. 分别将不同浓度标准品,实验样本或者质控品加入相应孔中,每孔100μL。用封板膜 封住反应孔,在室温孵育2小时。说明书提供了一张96孔模板图,可用于记录标准品 和试验样本的板内位置; (样本需要稀释,详情参见样本制备部分。) - 4. 将板内液体吸去,使用洗瓶、多通道洗板器或自动洗板机洗板。每孔加洗涤液400μL,然后将板内洗涤液吸去。重复操作3次,共洗4次。每次洗板尽量吸去残留液体会有助于得到好的实验结果。最后一次洗板结束,请将板内所有液体吸干或将板倒置,在吸水纸拍干所有残留液体: - 5. 在每个微孔内加入100μL配制好的检测抗体。用封板膜封住反应孔,在室温孵育2小时; - 6. 重复第4步洗板操作; - 7. 在每个微孔内加入100μL稀释好的链霉亲和素- HRP A工作液。用封板膜封住反应孔,在室温孵育20分钟。**注意避光**; - 8. 重复第4步洗板操作; - 9. 在每个微孔内加入100µL TMB底物溶液,在室温孵育30分钟。**注意避光**; - 10. 在每个微孔内加入50µL终止液,请轻拍微孔板,使溶液混合均匀; - 11. 加入终止液后10分钟内,使用酶标仪测量450 nm的吸光度值,设定540 nm或570 nm 作为校正波长。如果波长校正不可用,以450 nm的读数减去540 nm或570 nm的读数。这种减法将校正酶标板上的光学缺陷。没有校正而直接在450 nm处进行的读数可能会更高且更不准确: - 12. **计算结果**:将每个标准品和样品的复孔吸光值取平均值,然后减去零标准品平均OD值(O.D.),使用计算机软件作四参数逻辑(4-PL)曲线拟合创建标准曲线。另一替代方法是,通过绘制y轴上每个标准品的平均吸光值与x轴上的浓度来构建标准曲线,并通过图上的点绘制最佳拟合曲线。数据可以通过绘制Human IL-7浓度的对数与O.D.的对数来线性化,并且最佳拟合线可以通过回归分析来确定。该程序将产生足够但不太精确的数据拟合。 如果样品被稀释,从标准曲线读取的浓度必须乘以稀释倍数。 # VIII. 参考文献 - 1. Namen, A.E. et al. (1988) J. Exp. Med. 167:988. - 2. Namen, A.E. et al. (1988) Nature 333:571 - 3. Goodwin, R.G. et al. (1989) Proc. Natl. Acad. Sci. USA 86:302. - 4. Appasamy, P.M. (1993) Cancer Invest. 11:487. - 5. Heufler, C. et al. (1993) J. Exp. Med. 178:1109. - Goodwin, R.G. and A.E. Namen (1992) "Interleukin 7" in Human Cytokines, Handbook for Basic and Clinical Research, Aggarwal, B.B. and J.U. Gutterman eds. - 7. Vollger, L.W. and C.H. Uittenbogart (1993) Cytokine 5:157. - 8. Muegge, K. et al. (1993) Science 261:93. ## 96 孔模板图 请使用 96 孔模板图来记录标准品及样本在板内的位置