Hechne

proteinsimple

Novel iclEF fractionation coupled with different MS systems for rapid charge variant characterization of therapeutic antibodies

Cheng Zhou¹, Xiaojing Shen¹, Nagalakshmi Sooriyanarayanan¹, Jingfang Huang², Craig Leibelt¹, Kevin Strozyk³, Scott Mellors⁴, Baburaj Kunnummal¹, Roland Wang¹, Jessica Dermody¹

INTRODUCTION

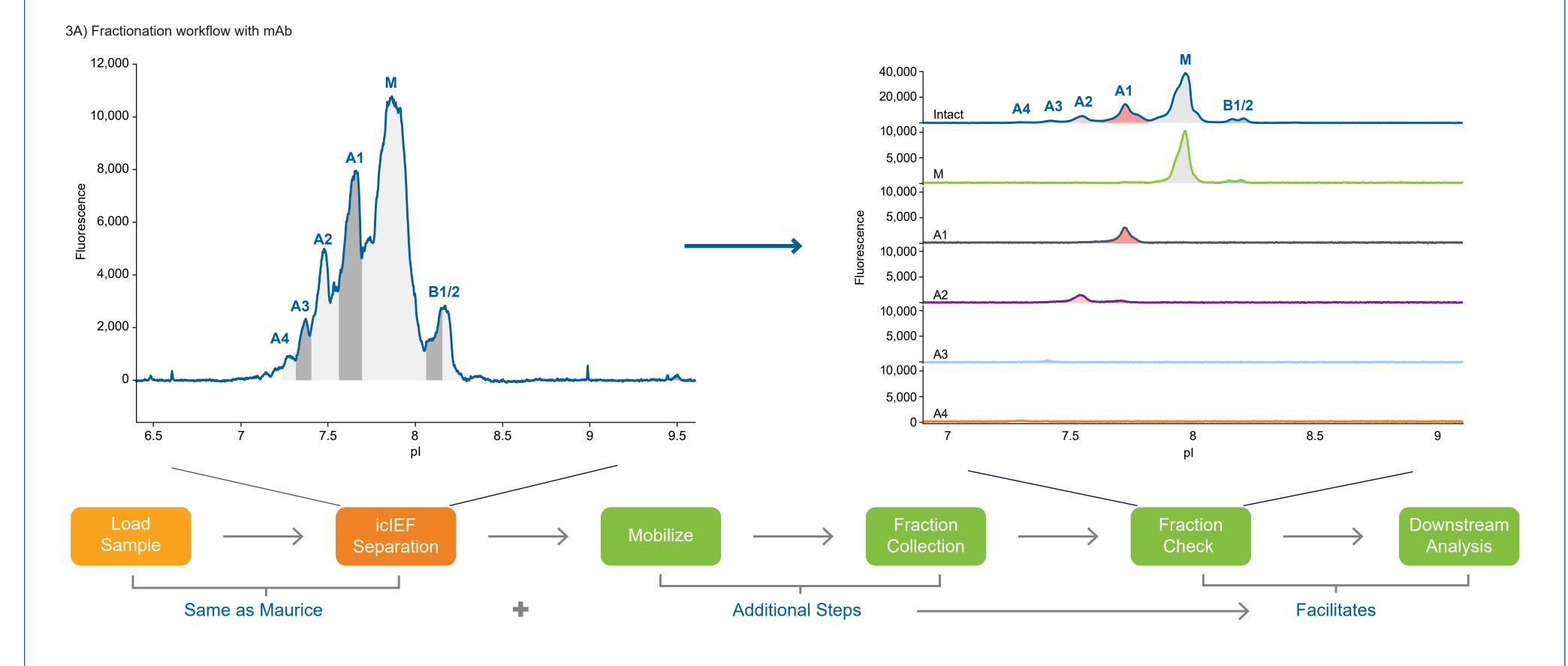
Antibody-drug conjugates (ADCs) are a growing class of biotherapeutics in which a potent small molecule (drug) is chemically linked to an antibody. Ensuring safety and efficacy through comprehensive understanding of these products' critical quality attributes (CQAs), including charge heterogeneity, is a regulatory requirement. While imaged capillary isoelectric focusing (icIEF) is the preferred method for charge profiling, ion-exchange chromatography (IEX) has been the primary tool for charged-based fractionation combined with mass spectrometry (MS) characterization. However, the conjugated linker-drug on ADCs could potentially affect the separation performance leading to difficulties with IEX analysis and fractionation. Moreover, separation resolution is often better using icIEF than IEX due to the inherently different separation modes. Recent discontinuation of other charge-based fractionation technologies has resulted in an unmet need for IEF-based fractionation of charge variants for further characterization.

We have developed a novel icIEF fractionation solution, which involves icIEF separation and the collection of IEF-resolved charge variants. Here we report Maurice icIEF-based peak identification and mass spectrometry characterization of fractions from an ADC parent mAb. Individual charge variants of the mAb were successfully collected in less than 2 hours with purity of 80%-100% using icIEF separation conditions with urea. Without any post-run sample prep, fractions from a single fractionation run were then used for MS characterization. LC-MS and ZipChip-MS setups were utilized, and both analyses identified major and minor isoforms that correlated well with reported mass spec data. Urea and methylcellulose present during the icIEF separation did not affect the quality of fractionation nor the mass spec results. Furthermore, charge variants collected during fractionation were characterized by peptide mapping, allowing unambiguous correlation between post translational modifications (PTM) and the individual charge variant. While peptide mapping data were collected for fractions from a single run, pooling of fractions from multiple runs provides increased protein quantities if needed. IEF-based fractionation provides a significant advantage over IEF-MS direct coupling methods as fractions can be utilized for multiple analyses, including intact mass and peptide mapping. This novel icIEF fractionation solution coupled with other analysis methods, such as mass spectrometry, delivers a powerful charge variant characterization tool for therapeutic antibodies.

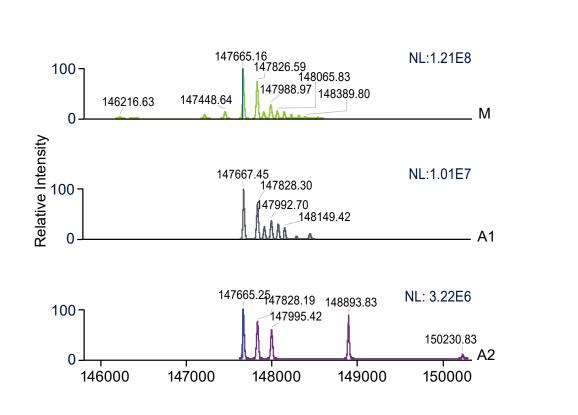
WORKFLOW AND METHODS

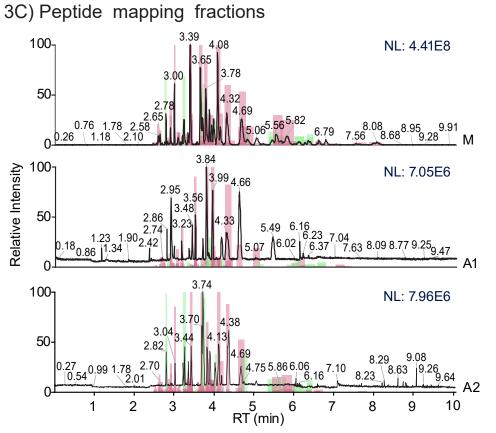
icIEF separation and fractionation:

Samples were mixed with ampholytes, pl markers, and arginine as described in the figures below. Samples were loaded into the Fractionation Cartridge and icIEF separation was performed under defined voltage steps. At the end of icIEF separation, mobilization was initiated using a mobilization buffer and fractions were collected at defined intervals into a 96-well plate containing buffer. Focusing and mobilization were monitored using real-time fluorescent imaging. icIEF fraction check:


A portion of the fraction was checked on Maurice using a standard Maurice icIEF cartridge to confirm the charge variant (pl and purity) present in each fraction. LC-MS and ZipChip-MS fraction characterization:

A portion of the fraction was either analyzed by intact mass spectrometry or digested for peptide mapping as needed. MS characterization was performed using a single fraction from a single fractionation run. If needed, higher quantities of a charge variant can be obtained by combining fractions from multiple fractionation runs (i.e., pooling), however no pooling was needed for this study.


LC-MS analysis: A MAbPac[™] Reversed Phase HPLC column (Thermo, PN 303182) was used for separation and MS analysis was performed using Thermo Scientific UltiMate[™] 3000 RSLCnano System coupled with Thermo Fisher Q Exactive HF mass spectrometer. Injection volume was 5 µL. Flow rate was 15 µL/min. No buffer exchange was performed prior to analysis.


ZipChip analysis: A ZipChip system (908 Devices Inc.) was coupled to a Thermo Exploris 240 mass spectrometer or a Thermo Fisher Exactive EMR mass spectrometer. An HSN chip type (High Speed Native) was used. The BGE is the commercially available "Peptides" BGE for the ZipChip system. The separation field strength is 1000 V/cm; injection volume is 2 nL; pressure assist starts at 0 minutes.

Peptide mapping: Individual fractions were denatured by 8 M urea, followed by reduction and alkylation with iodoacetamide. After the samples were diluted by 4 times, tryptic digestion were performed at 37 °C overnight with a trypsin-to-protein ratio of 1 to 30. The digestion reaction was quenched by adding formic acid to lower the pH.

3B) Intact mass fraction analysis

¹ ProteinSimple, a Bio-Techne brand, San Jose, CA 95134; ² R&D System, a Bio-Techne brand, Minneapolis, MN 55413; ³ Seagen, Bothell, WA 98021; ⁴ 908 Devices Inc., Boston, MA 02210

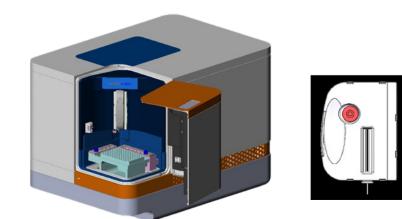


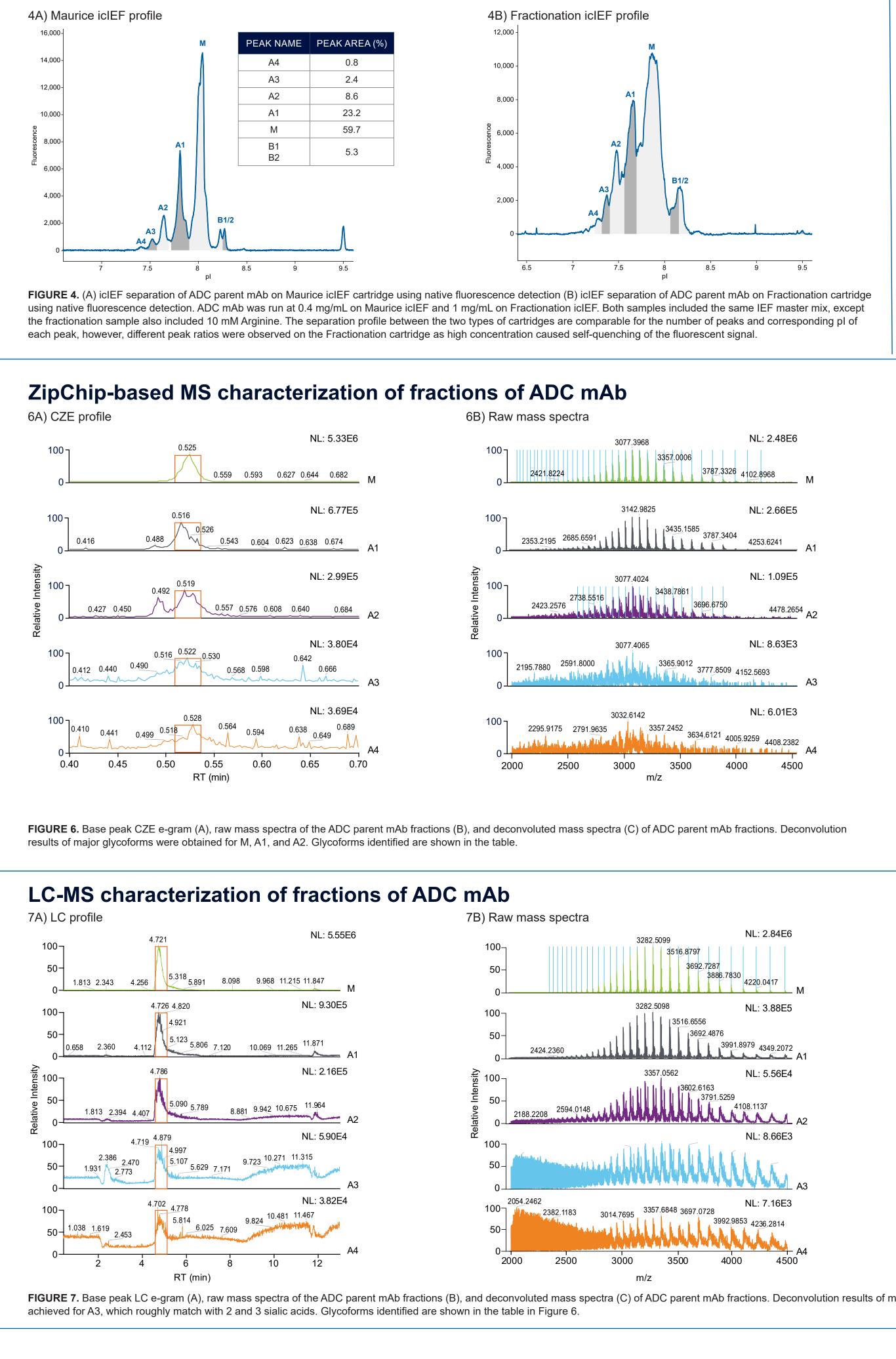
FIGURE 1. icIEF fractionation instrument and cartridge

FIGURE 2. ZipChip-MS (Note: picture is for illustrative purposes only.)

FIGURE 3. (A) icIEF separation of mAb on a Fractionation cartridge using native fluorescence detection. ADC parent mAb was run at 1 mg/mL on Fractionation icIEF using 2.4% Pharmalyte (15%:42.5%:42.5%=3–10:5–8:8–10.5), 0.3% methylcellulose, 3.5 M urea and 10 mM arginine. (B) Intact mass analysis of fractions containing M, A1, and A2 peaks. (C) Peptide mapping analysis of fractions containing M, A1, and A2 peaks. As shown in the table above, sequence coverage for analyzed fractions achieved greater than 70% and 68% for heavy chain (HC) and light chain (LC), respectively.(B1/2=Base peak 1 and Base peak 2, M=Main peak, A1 = Acidic peak 1, A2=Acidic peak 2, A3=Acidic peak 3, A4=Acidic peak 4).

83.2

68.7


83.6

CHARGE HC SEQUENCE LC SEQUENCE VARIANT COVERAGE (%) COVERAGE (%)

89.0

70.7

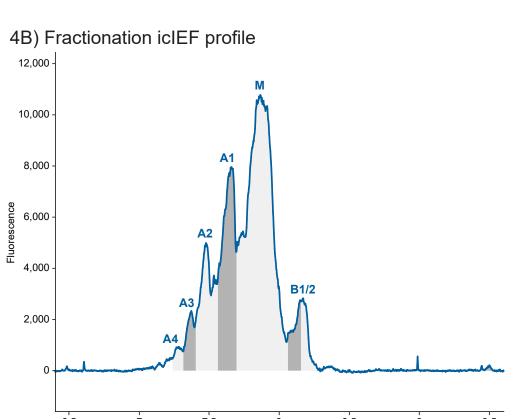
82.8

• Same IEF peaks: Charge variant peaks detected in Maurice icIEF profile are the same as charge variants collected in fractionation

REDSYSTEMS INOVUS TOCRIS proteinsimple

Μ

A1


A2

RESULTS

icIEF fractionation of ADC parent mAb

CONCLUSION

The icIEF fractionation system reported here addresses challenges of fractionation of ADCs on IEX and provides a separation mode identical to the analytical icIEF methods traditionally in use today, mitigating the need to conduct bridging studies or compare charge variant data between different separation techniques. Using an ADC parent mAb as a sample model, we collected individual charge variants with Δpl <0.1 and abundance >1%. ZipChip-based MS analysis detected charge variants with abundance >5% while LC-MS detected charge variants with abundance >2%, and major glycoforms identified correlated well with reported data. The advantages of this icIEF fractionation system include, but are not limited to:

• Easy method transfer: Use existing Maurice icIEF methods on the new fractionation system with minimum or no modification

• Sample flexibility: Methylcellulose, urea, or other additives can be used during fractionation and will either not enter the collected fractions or can be removed before downstream analysis • More sample: When needed, fractions from multiple fractionation runs containing the same charge variant can be combined

• Flexibility of downstream analysis: Fractions can be characterized using multiple mass spectrometry systems as well as by other analysis methods as needed since charge variant fractions are collected in a non-destructive manner.

CONTACT: bio-techne.com © 2022 Bio-Techne[®]. All rights reserved.

				charg		
40,000 - 20,000 -						1
10,000 -	Intact A4	A3 A2 A		31/2		
5,000 -			Λ			
10,000 -	M (94.1%)			~		YENNEN AL
5,000 -	A1 (92.0%)					
10,000 -	AT (92.0%)					
5,000 -	A2 (80.1%)					namilin ^a huditinini A2
10,000 - 5,000 -						
10,000 -	A3 (85.5%)					A3
5,000 -						→
0 -	A4 (100%) 7	7.5	8	8	.5	A4
	5. Maurice iclE	E profilo c	pl	tod (intact)	ADC parant	mAb and
tions	collected for m/	Ab charge	e variants usi	ng the sam	e conditions	as Maurice icIEF
	ire 4. All charge , and most char					successfully
Dec	onvoluted ma	ass spec	tra			
00 т		147665	.16 147826.59 148	8065.83	NL: 1.21E8	
	146216.63	147448.64	147988.97	148389.80		
0			- Christian			М
ר 100		14766	147828.30		NL: 1.01E7	
		Á		49.42		A1
0		14	7828.19			
ر ⁰⁰		147665.25	148893.83 47995.42	3	NL: 3.22E6	
0		<u> </u>		150	230.83	A2
	6000 1470	000	148 ['] 000 Mass	149000	150000	
			wass			
_						
	SPECIE		OBSI		ASS (Da)	
	G0/NG		OBSI	146,22	1	
	G0/NG G0/G0-1		OBSI	146,22 147,45	1 8	
	G0/NG		OBS	146,22	1 8 5	
	G0/NG G0/G0-1 G0/G0	1	OBSI	146,22 147,45 147,66	1 8 5 8	
	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2	1 /G2	OBS	146,22 147,45 147,66 147,82 147,99 148,15	1 8 5 8 1 2	
	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2	1 /G2	OBS	146,22 147,45 147,66 147,82 147,99 148,15 148,31	1 8 5 8 1 2 4	
	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2	1 /G2 /S		146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90	1 8 5 8 1 2 4 0	
	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2	1 /G2 /S		146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90	1 8 5 8 1 2 4 0	
	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2	1 /G2 /S		146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90	1 8 5 8 1 2 4 0	
	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2 S =	I /G2 S = SIALIC	CACID (NE	146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90	1 8 5 8 1 2 4 0	
	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2	I /G2 S = SIALIC	CACID (NE	146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90	1 8 5 8 1 2 4 0 C)	
	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2 S =	I /G2 S = SIALIC	ACID (NE	146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90 URAMINI	1 8 5 8 1 2 4 0	
100	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2 S = Onvoluted ma	1 /G2 S = SIALIC ass spec 147620.94	ACID (NE)	146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90 URAMINI	1 8 5 8 1 2 4 0 C) NL: 1.48E8	
$ \begin{array}{c} 100\\ 50\\ 0 \end{array} $	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2 S =	1 /G2 S = SIALIC 147620.94 ¹⁹ 147454.83	2 ACID (NE tra 147666.38 147827.61 147987.8	146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90 URAMINI	1 8 5 8 1 2 4 0 C) NL: 1.48E8	M
$ \begin{array}{c} 100\\ 50\\ 0 \end{array} $ $ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 10$	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2 S = 0nvoluted ma 145987.00 147107. 146221.97	1 /G2 S = SIALIC 147620.94 19 147454.83 147668.00 47641.44	ACID (NE)	146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90 URAMINI	1 8 5 8 1 2 4 0 C) NL: 1.48E8	M
100 50 0 100 50	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2 S = onvoluted ma 145987.00 147107. 146221.97	1 /G2 S = SIALIC 147620.94 19 147454.83 147668.00 47641.44	ACID (NE)	146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90 URAMINI	1 8 5 8 1 2 4 0 C) NL: 1.48E8 NL: 1.41E7 148969.42	
$ \begin{bmatrix} 100 \\ 50 \\ 100 \\ 50 \\ 0 \end{bmatrix} $	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2 S onvoluted ma 145987.00 147107. 146221.97	I /G2 S = SIALIC 147620.94 19 147454.83 147668.00 47641.44 34 147438.48	ACID (NE)	146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90 URAMINI URAMINI	1 8 5 8 1 2 4 0 C) NL: 1.48E8 NL: 1.41E7 4 148969.42	M A1
$100 \\ 50 \\ 1 \\ 0 \\ 100 \\ 50 \\ 0 \\ 100 \\ $	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2 S onvoluted ma 145987.00 147107. 146221.97	I /G2 S = SIALIC 147620.94 19 147454.83 147668.00 47641.44 34 147438.48	CACID (NE 147666.38 147827.61 147987.8 147998.36 147998.36 147998.36 148 147998.36 148 147998.36 148 147998.36 148 147995.11	146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90 URAMINI URAMINI	1 8 5 8 1 2 4 0 C) NL: 1.48E8 NL: 2.74E6 8897.39	
$ \begin{array}{c} 100 \\ 50 \\ 100 \\ 50 \\ 0 \end{array} $ $ \begin{array}{c} 100 \\ 50 \\ 0 \end{array} $	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2 S = 0nvoluted ma 145987.00 147107. 146221.97 146392.41 147087. 146392.41	I /G2 S = SIALIC 147620.94 19 147454.83 147668.00 47641.44 34 147438.48	ACID (NE) Stra 147666.38 147827.61 147987.8 147834.03 147998.36 148 147832.19 14	146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90 URAMINI URAMINI	1 8 5 8 1 2 4 0 C) NL: 1.48E8 NL: 1.41E7 4 148969.42 NL: 2.74E6	A1
$ \begin{array}{c} 100 \\ 50 \\ 100 \\ 50 \\ 0 \\ 100 \\ 50 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2 S = 0nvoluted ma 145987.00 147107. 146221.97 146392.41 147087. 146392.41	1 /G2 S = SIALIC 147620.94 19 147454.83 147668.00 47641.44 34 147438.48 147670.20-	CACID (NE 147666.38 147827.61 147987.8 147998.36 147998.36 147998.36 148 147998.36 148 147998.36 148 147998.36 148 147995.11	146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90 URAMINI URAMINI	1 8 5 8 1 2 4 0 C) NL: 1.48E8 NL: 2.74E6 8897.39	A1 A2
$ \begin{array}{c} 100 \\ 50 \\ 100 \\ 50 \\ 0 \\ 100 \\ 50 \\ 0 \\ 100 \\ 0 \\ 0 \\ 100 \\ 0 \\ 0 \\ 100 \\ 0 \\ 0 \\ 100 \\ 0 \\ 0 \\ 100 \\ 0 \\ 0 \\ 100 \\ 0 \\ 0 \\ 100 \\ 0 \\ 0 \\ 0 \\ 100 \\ 0 \\ 0 \\ 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2 S = 0nvoluted ma 145987.00 147107. 146221.97 146392.41 147087. 146392.41	1 /G2 S = SIALIC 147620.94 19 147454.83 147668.00 47641.44 34 147438.48 147670.20-	CACID (NE ACID (NE 147666.38 147827.61 147987.8 147998.36 147998.36 147998.36 147995.11 147832.19 147995.11 147832.19	146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90 URAMINI URAMINI	1 8 5 8 1 2 4 0 C) NL: 1.48E8 NL: 1.41E7 4 148969.42 NL: 2.74E6 8897.39 9264.17 A	A1 A2
$ \begin{array}{c} 100 \\ 50 \\ 100 \\ 50 \\ 0 \\ 100 \\ 50 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2 S = 0nvoluted ma 145987.00 147107. 146221.97 146392.41 147087. 146392.41	1 /G2 S = SIALIC 147620.94 19 147454.83 147668.00 47641.44 34 147438.48 147670.20-	CACID (NE ACID (NE 147666.38 147827.61 147987.8 147998.36 147998.36 147998.36 147995.11 147832.19 147995.11 147832.19	146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90 URAMINI URAMINI	1 8 5 8 1 2 4 0 C) NL: 1.48E8 NL: 1.41E7 4 148969.42 NL: 2.74E6 8897.39 9264.17 A	A1 A2
$ \begin{array}{c} 100 \\ 50 \\ 100 \\ 50 \\ 0 \end{array} $ $ \begin{array}{c} 100 \\ 50 \\ 0 \end{array} $ $ \begin{array}{c} 100 \\ 50 \\ 0 \end{array} $	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2 S = 0nvoluted ma 145987.00 147107. 146221.97 146392.41 147087. 146392.41	1 /G2 S = SIALIC 147620.94 19 147454.83 147668.00 47641.44 34 147438.48 147670.20-	CACID (NE ACID (NE 147666.38 147827.61 147987.8 147998.36 147998.36 147998.36 147995.11 147832.19 147995.11 147832.19	146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90 URAMINI URAMINI	1 8 5 8 1 2 4 0 C) NL: 1.48E8 NL: 1.41E7 4 148969.42 NL: 2.74E6 8897.39 9264.17 A	A1 A2
$ \begin{array}{c} 100 \\ 50 \\ 100 \\ 50 \\ 0 \\ 100 \\ 50 \\ 0 \\ 100 \\ 50 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	G0/NG G0/G0-1 G0/G0 G0/G1 G1/G1, G0/ G1/G2 G2/G2 G2/G2+2 S = 0nvoluted ma 145987.00 147107. 146221.97 146392.41 147087. 146392.41	1 /G2 S = SIALIC 147620.94 19 147454.83 147668.00 47641.44 34 147438.48 147670.20-	CACID (NE ACID (NE 147666.38 147827.61 147987.8 147998.36 147998.36 147998.36 147995.11 147832.19 147995.11 147832.19	146,22 147,45 147,66 147,82 147,99 148,15 148,31 148,90 URAMINI URAMINI	1 8 5 8 1 2 4 0 C) NL: 1.48E8 NL: 1.41E7 148969.42 NL: 2.74E6 8897.39 9264.17 NL: 2.68E5 NL: 2.68E5	A1 A2

iCIEF fractionation (ProteinSimple/Biotechne: Ed Chance, ed.chase@bio-techne.com ZipChip (908 Devices): Scott Mellors, mellors@908devices.com