Gut Hormones and Metabolism

Rebecca Scott* & Steve Bloom**

*Department of Investigative Medicine, **Head of Division of Diabetes, Endocrinology and Metabolism,

Commonwealth Building, Hammersmith Hospital, Imperial College London, Du Cane Road, London, W12 ONN

The gut is the largest endocrine organ in the body. More than 30 hormones are produced by the gastrointestinal tract, pancreas and fat, with many other related peptides produced in the brain. Many gut hormones are released by the direct action of ingested nutrients on enteroendocrine cells found within the intestine. These hormones act to control food intake and energy expenditure.

Gut-Brain Axis

The hypothalamus is the co-ordination center for energy homeostasis, and the arcuate nucleus (ARC) in the hypothalamus is the epicenter for integration of signals about the energy status and requirements of an individual. The ARC contains two distinct populations of neurons. NPY and AgRP neurons are orexigenic (stimulate appetite), and are activated by signals such as ghrelin, while CART and POMC neurons are anorexigenic (reduce appetite), and are stimulated by GLP-1 and PYY. These neurons reciprocally innervate each other, so activation of the CART/POMC neurons turns off the NPY/AGRP neurons and vice versa.

The ARC receives inputs from many different sources. It lies close to the median eminence, which lacks a blood brain barrier, allowing direct access to hormones from the periphery. The vagus nerve connects the gastrointestinal tract to the hypothalamus, relaying messages about gut hormones and gastrointestinal distension. Reciprocal connections also exist between the brain stem and the hypothalamus. The ARC then relays messages to other hypothalamic nuclei, such as the ventromedial nucleus, the dorsomedial nucleus and the lateral hypothalamic area. There is subsequent output to the sympathetic nervous system, the thyroid axis, the limbic system, and back to the vagus, which then control food intake and energy expenditure.

Gut Hormones and Obesity

In normal circumstances,
co-ordination of the gut-brain axis
ensures that an individual maintains
their weight within a narrow range.
However, persistent excessive food
consumption can overcome the
normal homeostatic mechanisms
and lead to the development of
obesity. Furthermore, once a person
has become obese, their physiology
changes to make weight loss even
harder. In obese patients, there is a
relative reduction in levels and
efficacy of the satiety hormones PYY

Hormone	Obesity	Weight loss
PYY	\checkmark post-prandial rise	\checkmark
PP	$\sqrt{/\uparrow}$	ψ/\uparrow
GLP-1	↓ post-prandial rise	\checkmark
CCK	$\sqrt{/\uparrow}$	\checkmark
Leptin	Increased baseline levels but increased resistance to action	\checkmark
Ghrelin	Reduced baseline levels and failure to suppress post-prandially	^
Amylin	\uparrow	\checkmark

PP, GLP-1 and CCK. There is also a resistance to the effects of leptin, and an increased sensitivity to ghrelin. These changes stop people feeling full and increase food consumption.

Unfortunately, when people diet, the body tries to defend against weight loss. The satiety hormones (such as PYY, CCK, leptin and amylin) fall, while the orexigenic NPY and ghrelin increase. Metabolic rate also slows. This makes it progressively harder to lose weight and maintain weight loss.

Gut Hormones Drug Therapies and Bariatric Surgery

Gut hormones can be used as a pharmacological therapy for obesity. Naturally-occurring gut hormones have very short half-lives in the body, which limit their use. However long-lasting versions are being developed. Exendin-4 is a GLP-1 analog first discovered in the saliva of the Gila monster. It is resistant to the enzyme dipeptidyl peptidase IV, which breaks down GLP-1, and therefore has a prolonged half-life. The synthetic version, exenatide, is a common treatment for diabetes. Another long-acting GLP-1 analog, liraglutide, is available as a treatment for both diabetes and obesity. Stabilized analogs of both PYY and PP have been developed and have entered clinical trials as treatments for obesity. There is increasing evidence for targeting obesity with combinations of gut hormones. Chronic injections of oxyntomodulin, which activates both GLP-1 and glucagon receptors, reduce body weight in obese patients, and a number of oxyntomodulin analogs are in development as a treatment for obesity. Additionally, several drugs targeting both the GLP-1 and GIP pathways, and triple-agonists at the GLP-1, GIP and glucagon receptors, are being developed.

Bariatric surgery is now recognized as the most effective, lasting treatment for obesity. Surgery has two effects. Firstly, the size of the GI tract, particularly the stomach, is made smaller, so patients eat less. Secondly, the levels of gut hormones change, promoting a more anorexic environment. Roux-en-Y bypass is the most common form of bariatric surgery, and after this the post-prandial response is altered so that GLP-1, PPY. oxyntomodulin, glucagon and CCK all increase, while ghrelin and GIP levels fall. Gastrin levels also fall but are elevated by PPI treatment. There is no significant change in PP levels. The changes in gut hormones, particularly GLP-1, may be responsible for the improvement in diabetes seen after bariatric surgery independent of weight loss.

Neurochemicals | Signal Transduction Agents | Peptides | Biochemicals

www.tocris.com

HORMONE	RELEASE FROM	RECEPTOR
Agouti-related peptide (AgRP)	Hypothalamus, particularly arcuate nucleus	Inverse agonist of Melanocortin MC_3 and MC_4 receptors
Endocannabinoids	Central nervous system	CB ₁ and CB ₂ receptors
Galanin	Enteric neurons, central and peripheral nervous system	G-protein coupled receptors GAL_1 , GAL_2 and GAL_3
Ghrelin	X/A-like cells of the stomach	Ghrelin receptor (also increases preference for sweet food)
Growth hormone-releasing hormone (GHRH)	Hypothalamus	Growth hormone releasing hormone receptor
Melanin-concentrating hormone (MCH)	Hypothalamus	Melanin-concentrating hormone receptor
Neuropeptide Y (NPY)	Hypothalamus and enteric neurons	Y_1 , Y_2 and Y_5 receptors (increases food intake via Y_1 and Y_5 ; decreases food intake via Y_2 receptor)
Orexin B	Intestine and hypothalamus	OX ₁ and OX ₂ receptors

HORMONE	RELEASE FROM	RECEPTOR
Amylin	β -cells of the pancreas	AMY _{1a} , AMY _{2a} and AMY _{3a} (Calcitonin receptor core, with an associated receptor activity modifying protein RAMP1, RAMP2 or RAMP3)
Calcitonin gene-related peptide (CGRP)	Enteric neurons, central and peripheral nervous system	CGRP receptor (Calcitonin receptor-like receptor with associated RAMP1)
Cholecystokinin (CCK)	I-cells duodenum	CCK ₁ and CCK ₂ receptors
Cocaine and amphetamine- regulated transcript (CART)	Hypothalamus	The CART receptor has not been fully identified
Corticotrophin-releasing hormone (CRH)	Hypothalamus	CRHR1 and CRHR2 receptors (reduces or increases food intake depending on route of administration)
Gastrin releasing peptide	Enteric neurons and central nervous system	BB ₂ receptor
Glucagon	α -cells of the pancreas	Glucagon receptor
Glucagon-like peptide 1	L-cells of the ileum	GLP-1 receptor (also reduces preference for sweet food)
Glucagon-like peptide 2	L-cells of the ileum	GLP-2 receptor
Glucose-dependent insulinotropic peptide	K-cells of the jejunum	GIP receptors
Insulin	β -cells of the pancreas	Insulin receptor
Leptin	Adipose tissue	Leptin receptor
α -melanocortin-stimulating hormone (α -MSH)	Hypothalamus	Melanocortin MC_3 and MC_4 receptors
Neuromedin B	Hypothalamus and enteric neurons	BB1 receptor
Neuromedin U (NMU)	Central nervous system and intestine	NMU1 and NMU2 receptors
Neurotensin	Central nervous system and N cells of intestine	NTS ¹ and NTS receptors
Opioid Peptides (met-enkephalin leu-enkephalin, β-endorphin and dynorphin)	, Enteric neurons	μ,κ and $\delta\text{-opioid}$ receptors
Oxyntomodulin	L-cells of the ileum	Co-agonist of glucagon and GLP-1 receptors
Pancreatic polypeptide	PP-cells of the pancreas	Y ₄ receptor
Peptide tyrosine tyrosine (PYY3-36)	L-cells of the ileum	Y ₂ receptor
Pituitary adenylate cyclase activating polypeptide (PACAP)	Intestine and nervous system	PAC1, VPAC ₁ and VPAC ₂
Urocortins	Brain and widely distributed	CRF receptors

Products available from Tocris AMPK

A 769662, AICAR, Dorsomorphin, Metformin, PF 06409577, SAMS Peptide

Bombesin Receptors

Bombesin, GRP (human), GRP (porcine), Neuromedin B (porcine), PD 176252 **Calcitonin and Related Receptors** BIBN 4096, CGRP 8-37 (human), CGRP 8-37 (rat), α-CGRP (human)

Cannabinoid Receptor AM 251, AM 281, AM 630, HU 308, JWH 133, SR 141716A

Cholecystokinin1 Receptor

A-71623, CCK Octapeptide, sulfated, CI 988, Devazepide, Gastrin I (human) YM 022

Galanin Receptors

Galanin (1-29) (rat, mouse), Galanin (1-30) (human). M 1145. M40, M617, M871

Ghrelin Receptors

[D-Lys³]-GHRP-6, Ghrelin (human), Ghrelin (rat), Tabimorelin, YIL 781 **Glucagon Receptor**

des-His¹-[Glu9]-Glucagon (1-29) amide, L-168,049, Oxyntomodulin

Glucagon-Like Peptide Receptors Exendin-3 (9-39) amide, Exendin-4, Glucagon-like peptide 1 (1-37) (human, rat), Glucagon-like peptide 1

(7-36) amide (human, rat) Insulin and Insulin-like Receptors 6bK, BMS 536924, Insulin (human)

recombinant, Mitoglitazone, NBI 31772, Picropodophyllotoxin

Leptin Receptors LEP (116-130) (mouse)

Melanocortin Receptors

ACTH (1-39), Melanotan II. ML 00253764, SHU 9119 **Motilin Receptors**

ANQ 11125, Motilin (human, porcine) mTOR

AZD 3147, eCF 309, PP 242, Rapamycin, Torin 1, Torin 2

Neuromedin U Receptors

Neuromedin S (rat), Neuromedin U (rat) **NPY Receptors**

[Leu³¹,Pro³⁴]-Neuropeptide Y (human, rat), BIBO 3304, BIIE 0246, GW 438014A. Neuropeptide Y (human, rat), Peptide YY (3-36)

Opioid Receptors

(±)-U-50488, DAMGO, Naltrindole, nor-Binaltorphimine, SNC 80, **B-Funaltrexamine**

Orexin Receptor

[Ala¹¹,D-Leu¹⁵]-Orexin B, EMPA, Orexin A (human, rat, mouse), Orexin B (human), SB 334867, TCS 0X2 29 Secretin Receptors

Secretin (human), Secretin (rat)

Somatostatin Receptors

Cyclosomatostatin, CYN 154806. L-803,087, Octreotide, Seglitide, Somatostatin

VIP Receptors

[D-p-CI-Phe⁶,Leu¹⁷]-VIP, Bay 55-9837, VIP (human, rat, mouse, rabbit, canine, porcine)

Lean and Malkova (2016) Int. Journal of Obesity (London) 40 622 Meek et al (2016) Peptides 77 28 Pi-Sunyer et al (2015) NEJM **373** 11 Troke et al (2014) Ther. Adv. Chronic Dis. **5** 4 Wilson and Enriori (2015) Mol. Cell ocrinology **418** 108

For copies of this poster, please visit tocris.com © 2017 Tocris Cookson, Ltd. Tocris is a Bio-Techne brand