Epigenetics in Cancer

Product Guide | Edition 1

bio-techne[®] TOCRIS

Epigenetics in Cancer

Epigenetics can be defined as acquired changes in chromatin structure that arise independently of a change in the underlying DNA sequence. Epigenetic modifications including acetylation and methylation (histone marks) among others, can alter the accessibility of DNA to transcription machinery and therefore influence gene expression (**FIGURE 1**).

The dysregulation of these epigenetic modifications has been shown to result in oncogenesis and cancer progression. For example, the cell cycle, as well as proliferation and metastasis can be regulated by histone modification, DNA methylation and chromatin remodeling. Unlike genetic mutations, epigenetic alterations are reversible and thus make a promising therapeutic target.

Proteins that carry out these epigenetic modifications can be thought of as being either "writers", "readers" or "erasers".

- Epigenetic writers catalyze the addition of epigenetic marks onto either histone tails or the DNA itself.
- Epigenetic reader domains are effector proteins that recognize and are recruited to specific epigenetic marks. "Writer" and "eraser" enzymes may also contain such reader domains, leading to the coordination of "read-write" or "read-erase" mechanisms.
- Epigenetic erasers remove epigenetic marks to alter gene expression.

This guide reviews some of the main areas in cancer epigenetic research, including histone methylation and histone acetylation, ubiquitination, and DNA methylation, among others.

Histone Methylation

One of the most studied post-translational histone modifications is methylation. Histone methylation is carried out by histone methyltransferases (HMT), which are subdivided according to their target residue: those that methylate the arginine histone tail are known as protein arginine methyltransferases (PRMT), and those that methylate the lysine histone tail are known as lysine methyltransferases (KMT). PRMTs and KMTs regulate both transcriptional activation and repression, as well as DNA repair.

Histone Methyltransferases (HMT- "writer")

Great efforts have been made to develop inhibitors targeting HMTs including DOT1L, SETD7, EZH2, G9A, and GLP. DOT1L (disruptor of telomeric silencing 1) is an attractive target for drug development. Recent studies have found that aberrant methylation by DOT1L is a fundamental step in the development of mixed-lineage leukemia (MLL)-rearranged leukemia, and preclinical studies have shown that the inhibition of this enzyme increases survival in a mouse model of leukemia. The potent DOT1L inhibitor SGC 0946 (Cat. No. 4541), selectively kills cells transformed with the MLL-AF9 fusion oncogene in vitro and lowers levels of MLL target genes HOXA9 and Meis1. The highly potent DOT1L inhibitor EPZ 004777 (Cat. No. 5567) has also been shown to selectively inhibit proliferation and induce apoptosis of MLL-rearranged cells in vitro, as well as prolonging survival in a MLL xenograft mouse model. Two other useful research tools for studying MLL are OICR 9429 (Cat. No. 5267) and MM 102 (Cat. No. 5307). OICR 9429 is a high affinity WDR5 antagonist, which disrupts WDR5/MLL interactions and reduces the viability of acute myeloid leukemia cells in vitro, as well as disrupting MLL1-RbBP5 interactions. MM 102 is a potent WDR5/MLL interaction inhibitor, which induces HoxA9 and Meis-1 gene expression, two key genes involved in leukemogenesis.

SETD7 (SET domain-containing 7 histone lysine methyltransferases) has a large and diverse number of substrates and has been implicated in multiple cancer pathways. Research suggests that in addition to histone methylation, SETD7 plays an important role in nonhistone methylation of transcription factors and chromatin regulatory complexes, which also leads to changes in gene expression. The exact role of SETD7 is still not fully understood. (R)-PFI 2 (Cat. No. 4892), a potent and selective SETD7 KMT inhibitor, suppresses yes - associated protein (YAP) nuclear translocation and function following activation of the Hippo signaling pathway in breast cancer cells and thus might be a potential therapeutic option for SETD7mediated cancer development.

FIGURE 1: Epigenetic alterations in cancer. The fundamental unit of chromatin is the nucleosome, which consists of an octamer of the histone proteins H2A, H2B, H3 and H4 (two of each) tightly bound by DNA. Alterations in chromatin structure by post-translational modifications can regulate gene expression through the formation of heterochromatin or euchromatin, which usually repress or activate gene transcription, respectively. Post-translational modifications include DNA methylation (Me) and acetylation (Ac) of histone tails. DNA methylation represses transcription by blocking the binding of transcription complexes to the gene promoter. The acetylation of histone tails usually loosens the DNA from around the nucleosomes, increasing the accessibility of gene promoters to transcription complexes, therefore promoting transcription.

Alternatively, histone tail methylation can repress or promote gene expression, depending on the site and extent of methylation, as well as the presence of other histone modifications in the vicinity. The pattern of these post-translational modifications on a nucleosome determines the transcriptional profile of nearby genes. Abbreviations: Ac: acetylation, BRD: bromodomains, DNMT: DNA methyltransferases, HAT: histone acetyltransferases, HDAC: histone deacetylases, KDM: histone demethylases, KMT: lysine methyltransferase, Me: methylation, Pol II: RNA polymerase II, PRC2: polycomb repressive complex 2, PRMT: protein arginine methyltransferases, P-TEFb: positive transcription elongation factor b, Ub: ubiquitin.

Enhancer of zeste homolog 2 (EZH2) is an enzymatic catalytic subunit of polycomb repressive complex 2 (PRC2) that can alter downstream target genes expression by trimethylation of Lys-27 in histone 3 (H3K27me3). PRC2 is composed of a core consisting of two methyltransferases EZH1 and EZH2 (enhancer of zeste homolog 1 and 2), the proteins SUZ12, EED and either RBBP4 or RBBP7. Dysregulation of methyltransferase EZH2 is associated with tumor aggressiveness and this protein is upregulated in breast and prostate cancer, as well as lymphoma and glioblastomas. Research into EZH2 as a target for cancer therapy has led to the development of different types of EZH2 inhibitors. The EZH2/EZH1 lysine methyltransferase inhibitor UNC 1999 (Cat. No. 4904), has been shown to inhibit the growth of MLL-rearranged leukemia cells and prolongs survival in a mouse model of leukemia, while GSK 126 (Cat. No. 6790; **BOX 1**) selectively inhibits EZH2 histone methyltransferase

activity and inhibits proliferation of B-cell lymphoma (BCL) cell lines *in vitro* and tumor growth in mice bearing BCL xenografts *in vivo*. A selective EDD inhibitor, EDD 226 (Cat. No. 7762; **BOX 1**), regulates histone H3K27 methylation and PRC2 target gene expression *in vitro* and induces tumor regression in a mouse xenograft model.

Overexpression of two other methyltransferases G9a and GLP has been found in many different types of cancer and the proteins are involved in the dimethylation and consequent inactivation of the tumor suppressor p53. Several G9a/GLP histone lysine methyltransferase inhibitors, including UNC 0638 (Cat. No. 4343), A 366 (Cat. No. 5163), and UNC 0642 (Cat. No. 5132) have been shown to attenuate dimethylation of histones in cancer cells *in vitro*. UNC 0642 can be used *in vivo* and displays modest brain penetration in mice.

Histone Demethylases (HDM- "eraser")

Histone demethylases (HDMs) catalyze the removal of methyl groups from histones and are involved in transcriptional regulation and DNA repair. Recently, the family of lysine (K)-specific demethylase (KDM) proteins, has been shown to be involved in various pathways related to cancer development and a majority of KDMs have been indicated to be oncogenes in both leukemia and solid tumors. Jumonji domain-containing histone-lysine demethylases (Jmj-KDMs) have been found to be upregulated in breast, prostate and colon cancer leading to the interest and development of new inhibitors able to block KDM activity and reduce tumor progression. JIB 04 (Cat. No. 4972) and IOX 1 (Cat. No. 4464) are pan-Jumonji histone demethylase inhibitors. JIB 04 diminishes tumor growth in mouse lung cancer xenograft models and prolongs survival in a mouse model of breast cancer, whereas IOX 1 inhibits JMJD2A-mediated demethylation in cervical cancer cells.

More selective histone demethylase inhibitors include the potent HDM inhibitor GSK J1 (Cat. No. 4593); this compound inhibits the H3K27 histone demethylases JMJD3 (KDM6B) and UTX (KDM6A), as well as KDM5B, KDM5C and KDM5A. GSK J4 (Cat. No. 4594) is the cell permeable ethyl ester derivative of GSK J1. Other histone demethylase inhibitors are: NSC 636819 (Cat. No. 5287) and JQKD 82 (Cat. No. 7676; **BOX 2**). NSC 636819, a KDM4A/KDM4B inhibitor, inhibits histone demethylase activity on H3K9me3 and induces apoptosis in LNCaP prostate cancer cells *in vitro* whereas JQKD 82, a KDM5 selective inhibitor, suppresses multiple myeloma cell growth *in vitro* and in a disseminated tumor mice model.

Histone Acetylation

Histone acetylation occurs on lysine residues and is predominantly associated with transcriptional activation. Acetylation increases transcription by neutralizing the histone's positive charge, reducing the attraction to the negatively charged DNA, and thus exposing gene promoters on the DNA for transcription. Chromatin conformation is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), which catalyze the addition and removal of acetyl groups, respectively.

Histone Acetyltransferases (HAT- "writer")

There are three HAT families: Gen5, p300/CREB-binding protein (CBP) and MYST. Studies have found that 51% of cancer cells lines tested have a mutation at p300 and 35% show a mutation in CBP, suggesting that these two genes are important tumor-suppressors. Among selective p300/ CBP inhibitors; C 646 (Cat. No. 4200), suppresses histone H3 and H4 acetylation in fibroblast cell lines; A485 (Cat. No. 6387) suppresses proliferation in several hematological malignancies and inhibits tumor growth in a castrationresistant prostate cancer xenograft model; and iP300w (Cat. No. 7270; **BOX 1**) suppresses tumor growth in a mouse CIC-DUX4 sarcoma xenograft model.

Acetyl transferase KAT5 (Tip60) is an interesting target because it plays a key role in chromatin remodeling, which regulates multiple levels of gene transcription and DNA repair. Furthermore, KAT5 acetylation is crucial for the p53dependent apoptotic pathway. Selective KAT5 inhibitor NU 9056 (Cat. No. 4903), inhibits protein acetylation in prostate cancer cell lines and blocks the DNA damage response. The compound decreases proliferation of LNCaP cells and induces apoptosis via caspase activation.

An alternative strategy to reduce histone acetyltransferase is to use the innovative method of selective target protein degradation with small molecule protein Degraders called PROTAC®s. JQAD1 (Cat. No. 7682; **BOX 3**), is a potent and selective histone acetyltransferase EP300 Degrader in neuroblastoma cell lines and causes growth delay of neuroblastoma tumor xenografts.

Histone Deacetylases (HDAC- "eraser")

HDACs catalyze acetyl group removal from lysine residues on histones and oncoproteins including p53, YY1 and STAT3. Many cancer cell lines and primary tumors have shown hypoacetylation profiles, in comparison with normal cells. This combined with the observation that HDACs are upregulated in many types of cancers, including prostate colorectal and breast cancer, make HDACs an attractive target. Several HDAC inhibitors have shown promising results, including MS 275 (Cat. No. 6208), FK 228 (Cat. No. 3515), Valproic acid (Cat. No. 2815) and Trichostatin A (Cat. No. 1406), which have shown antiproliferative and antitumor activity in vivo. Furthermore, the class I and II HDAC inhibitor SAHA (Cat. No. 4652), induces an accumulation of acetylated histones H2A, H2B, H3 and H4 and suppresses cell growth in a range of cancer cell lines, while inducing apoptosis in cutaneous T cell lymphoma cells in vitro. Additional selective inhibitors allow targeting of specific classes of HDACs, including Santacruzamate A (Cat. No. 7191) against HDAC2, Tubastatin A (Cat. No. 6270) and BRD 9757 (Cat. No. 6040) against HDAC6, and RGFP 966 (Cat. No. 6728) against HDAC3.

BOX 2 Novel Epigenetics Products A full list of targets and related products is available on pages 11-15

NVS MLLT-1 (Cat. No. 7482) Selective MLLT1/3 inhibitor

JQKD 82 (Cat. No. 7676) Selective inhibitor of lysine demethylase 5

Bromodomains (BRDs- "readers")

Bromodomains selectively recognize acetylated lysine residues on histone protein tails. Of particular interest is the BET (bromodomain and extra-terminal) bromodomain family, which comprises the ubiquitously expressed proteins BRD2, BRD3, BRD4; and the testis-specific protein, BRDT. Each of these BET proteins contains two bromodomains, known as bromodomain 1 (BD1) and bromodomain 2 (BD2). BET proteins play a key role at the interface between chromatin remodeling and transcriptional regulation and are integral in the regulation of transcriptional elongation and the cell cycle.

Inhibition of BET downregulates Myc in many malignant hematopoietic cell lines and exhibits therapeutic effects in mouse models of myeloid leukemia. CPI 203 (Cat. No. 5331) is a BET bromodomain inhibitor that downregulates Myc expression, causing G1 cell cycle arrest and attenuating cell proliferation in pancreatic neuroendocrine tumors. It has also been shown to arrest the growth of T cell acute lymphoblastic leukemia cells *in vitro*. Furthermore, CPI 203 enhances the antitumor effect of Rapamycin (Cat. No. 1292). Another BET bromodomain inhibitor, I-BET 762 (Cat. No. 6521), attenuates transcription of oncogenic MYC, suppresses key inflammatory genes, and displays antiproliferative effects *in vitro* and *in vivo*. Some studies have shown that iBET-BD2 (Cat. No. 7458) selectively inhibits the second bromodomains (BD2) of the BET proteins *in vitro* and *in vivo*.

BRD4 influences mitotic progression and is a critical mediator of transcriptional elongation because it binds to transcriptional sites of genes expressed during the M/ G1 cell cycle transition. BRD4 increases expression of genes that promote growth by recruiting P-TEFb (positive transcription elongation factor b) to mitotic chromosomes. Furthermore, it has been observed that BRD4 is significantly upregulated in both primary and metastatic melanomas. In vivo studies have shown that inhibition of BRD4 impairs tumor growth and metastasis. Key BRD4 inhibitors include the potent, high affinity and selective, archetypical BET bromodomain inhibitor (+)-JQ1 (Cat. No. 4499; BOX 1), which induces squamous cell differentiation and arrests tumor growth in BRD4-dependent carcinomas, including tumor growth in midline carcinoma cell xenograft models. CeMMEC1 (Cat. No. 7139), a BRD4 and high affinity TAF1 inhibitor, induces apoptosis and in combination with (+)-JQ1 inhibits proliferation of lung adenocarcinoma cells. I-BET 151 (Cat. No. 4650) potently blocks recruitment of BRD3/4 to chromatin, inducing apoptosis and cell cycle arrest in MLL-fusion leukemia cell lines and improves survival in rodent models of MLL fusion leukemia. Potent and selective BRD4 bromodomain inhibitor, MS 436 (Cat. No. 5173), causes fast acting cytostatic effects and attenuates the proliferation of three melanoma cell lines in vitro.

While most BRD research has historically focused on BET domains, the roles of other BRD-containing proteins are starting to generate intense interest. The bromodomain adjacent to zinc finger domain (BAZ) family includes BAZ1A, BAZ1B, BAZ2A, and BAZ2B. BAZ2A, and BAZ2B are involved in chromatin remodeling and the regulation of non-coding RNA. BAZ domains form an interesting research target because BAZ2A has been shown to be involved in prostate cancer growth, and high expression levels of BAZ2B are correlated with B cell acute lymphoblastic leukemia. The selective BAZ2 bromodomain inhibitor BAZ2-ICR (Cat. No. 5266), demonstrates a 15-fold selectivity for the BAZ2 bromodomain over the CERC2 bromodomain and over 100-fold selectivity over a range of other bromodomains. Furthermore, BAZ2-ICR demonstrated a good in vivo profile and was suitable for oral administration, making it an ideal tool for investigating the BAZ2 bromodomain.

BRDs are also a key component of mammalian chromatinremodeling complexes, multiprotein complexes that are fundamental in modulating gene expression. They alter chromatin access by acting on nucleosomes in an ATPdependent manner. The SWI/SNF complex is particularly relevant in cancer and, depending on the complex, comprises multiple BRD-containing subunits including BRD7, PBRM1

and BRD9. All these targets are amenable to inhibition by recognized chemical probes such as BI 9564 (Cat. No. 5590; BOX 1) or TP 472 (Cat. No. 6000) against BRD7/9 and the selective BRD9 inhibitor I-BRD9 (Cat. No. 5591). The presence of SMARCA2/4 is ubiquitous across all forms of the SWI/ SNF complex and both subunits show noted mutational rates in many solid tumors including breast, lung and colon cancers. This creates an exploitable vulnerability that is being explored within multiple ongoing clinical trials, with several relevant chemical probes available against SMARCA2/4. For example, BRD can be targeted by SGC SMARCA-BRDVIII (Cat. No. 7460) or PFI 3 (Cat. No. 5072). Newer chemical probes like FHT 1015 (Cat. No. 7644) and FHT 2344 (Cat. No. 7645; BOX 2) are potent and highly selective inhibitors of the ATP-domains of SMARCA2/4. They alter key cancerassociated transcriptional programs by directly affecting chromatin accessibility.

Other known "reader" protein domains recognize and bind to acetylated lysine residues, such as plant homeodomain (PHD) fingers that recruit transcription factors and chromatin modification complexes. Proteins that contain bromodomains and PHD fingers (BRPF) form scaffold complexes in the HAT MYST family. The BRPF family includes BRPF1, BRPF 2 and BRPF3. MYST complexes are involved in

transcription activation and DNA repair and are often translocated in acute myeloid leukemia (AML). OF 1 (Cat. No. 5289) is a selective BRPF1B/2 inhibitor, which exhibits 39-fold selectivity for BRPF1B and BRPF2 over BRD4. Other key BRPF compounds are the potent and selective BRPF1 inhibitors GSK 6853 (Cat. No. 6198) and GSK 5959 (Cat. No. 5385). GSK 5959 is a cell permeable compound that inhibits BRPF1 interaction with histone H3.3 (a histone associated with reshaping the epigenome and several pediatric cancers). Recently discovered, TP 238 (Cat. No. 6670), a high affinity and selective bromodomain PHD finger transcription factor (BPTF) inhibitor, could be an important therapeutic target in cancer treatment.

MLLT1 is another key player in epigenetics signaling, acting as an acetyl/acyl-lysine dependent epigenetic "reader" domain, and its function occurs via its YEATS (Yaf9, ENL, AF9, Taf14, and Sas5) domain. Recently, mutations in the YEATS domain have been implicated in the development of aggressive cancers. Thus, targeting YEATS protein modules with small molecules has been proposed as a potential chemotherapeutic strategy. NVS MLLT-1 (Cat. No. 7482; **BOX 2**), has been identified as a selective inhibitor of YEATS domain of MLLT1 and MLLT3.

In addition to functional inhibition using small molecules, BRD domains have been successfully targeted for protein degradation using Degrader (PROTAC[®]) compounds. One of them, MZ 1 (Cat. No. 6154), a cell penetrant Degrader based on (+)-JQ1 (Cat. No. 4499; **BOX 1**), exhibits potent cytotoxicity and antiproliferative effects in acute myeloid leukemia (AML) cell lines. Other Degraders (PROTAC[®]) VZ 185 (Cat. No. 6936) and dBRD9-A (Cat. No. 6943) show selectivity for BRD7/9 and BRD9 respectively. VZ 185 exhibits cytotoxicity *in vitro* towards cancer cell lines whereas dBRD9-A inhibits growth of synovial sarcoma cells *in vitro* and tumor progression in a synovial sarcoma xenograft mouse model.

Ubiquitination

Compared to other histone modifications, the functions of histone ubiquitination are less well understood. However, increasing evidence points to an important role for this epigenetic modification in the DNA damage response.

Histone Ubiquitinating Enzymes

One ubiquitin E3 ligase currently under investigation is Skp2, which promotes ubiquitination and degradation of p27, as well as triggering the ubiquitination of Akt. Skp2 is upregulated in many types of cancer, playing an integral role in apoptosis, cell cycle control, cancer progression and metastasis. In addition, Skp2 has been shown to regulate the self-renewal capability of cancer stem cells. SZL P1-41 (Cat. No. 5076) selectively suppresses Skp2-Skp1, Cullin, F-box (SCF) containing complex E3 ligase activity but exhibits no effect on the activity of other SCF complexes. Furthermore, it inhibits Skp2-mediated p27 and Akt ubiquitination *in vitro* and *in vivo*. This compound suppresses the survival of cancer cells and cancer stem cells by triggering cell senescence and inhibiting glycolysis. It also exhibits antitumor effects in multiple animal models and cancer cell lines.

Another important E3 ubiquitin ligase is MDM2, a negative regulator of the p53 tumor suppressor. MDM2 protein functions both as an E3 ubiquitin ligase that binds p53 and as an inhibitor of p53 transcriptional activation. Increased levels of MDM2 have been found in several human tumor types, including soft tissue sarcomas and osteosarcomas as well as

Explore our Epigenetics Compound Library

Decipher the epigenetics machinery in your cells with confidence

Visit tocris.com/tocriscreen

breast tumors. Nutlin-3 (Cat. No. 3984) and Nutlin 3a (Cat. No. 6075) are MDM2 antagonists, that inhibit the MDM2-p53 interaction and activates p53. Nutlin-3 induces apoptosis in cancer cells whereas Nutlin 3a suppresses tumor growth *in vivo* in prostate cancer and osteosarcoma cancer models.

Polycomb-repressive complex 1 (PRC1)-mediated histone ubiquitination plays an important role in aberrant gene silencing in human cancers and is a potential target for cancer therapy. PRT 4165 (Cat. No. 5047) is a potent inhibitor of PRC1-mediated H2A ubiquitylation *in vivo* and *in vitro*.

The SCF family of ubiquitin ligases is involved in transcription and cell cycle control (specifically the control of G1/G2 transition). They catalyze the ubiquitination of proteins which then undergo proteasomal degradation. SMER 3 (Cat. No. 4375) is a selective inhibitor of a yeast SCF family E3 ubiquitin ligase (SCFMet30), and studies have demonstrated its ability to block cell proliferation *in vitro* and *in vivo*, as well as enhancing the inhibition of mTOR by Rapamycin (Cat. No. 1292).

Histone Deubiquitinating Enzymes

The removal of ubiquitin groups from histone lysine residues is catalyzed by proteases known as deubiquitinating enzymes (DUBs). Ubiquitin-specific protease (USP) and JAMM (JAB1/MPN/MOV34) family members have been shown to regulate transcription, DNA repair, gene expression and cell cycle progression. USP7 is a master regulator of p53-mediated apoptosis, modulating the effects of KAT5, Mdm2 and p53. USP7 deubiquitinates and stabilizes KAT5 and Mdm2; Mdm2 then ubiquitinates p53, which leads to its destruction, therefore maintaining normal p53 levels. The USP7 inhibitor P 22077 (Cat. No. 4485) destabilizes KAT5 and suppresses the p53-dependent apoptotic pathway. It also inhibits USP47 and HDM2.

Beclin 1 and p53 are two important tumor suppressors, which are frequently mutated in cancer. Beclin 1 regulates the activities of USP10 and USP13, which in turn regulate p53 levels. The autophagy inhibitor Spautin 1 (Cat. No. 5197), inhibits USP10 and USP13 activity and selectively promotes apoptosis of cancer cells under starvation conditions. This compound also promotes the degradation of the Beclin 1/ Vps34 complex.

Other Histone Modifications

Other enzymes involved in histone posttranslational modification include kinases, phosphatases, and proteases, see the products relating to these categories in the Tocris products list.

DNA Methylation

DNA methyltransferases (DNMTs) are a family of enzymes that catalyze the transfer of a methyl group from S-adenosyl methionine (SAM) to the target DNA. DNA methylation usually occurs on the 5' position of the cytosine (5mC) ring within CpG dinucleotides. Widespread DNA hypomethylation and hypermethylation have been observed at CpG islands and short CpG-rich DNA regions in gene promoters and are thought to promote tumorigenesis. Key research compounds for studying DNA methylation include a synthetic analog of cytidine, Zebularine (Cat. No. 2293), an orally active DNA methyltransferase inhibitor, which attenuates tumor cell proliferation and reactivates silenced genes in bladder carcinoma cells. Decitabine (Cat. No. 2624) is a cytosine analog that is incorporated into DNA and acts as a suicide substrate for DNA methyltransferase,

Targeted Protein Degradation Guide

This brochure highlights the tools and services available from Bio-Techne to support Targeted Protein Degradation research, including:

- Active Degraders
- TAG Degradation Platform
- Degrader Building Blocks
- Ubiquitin-Proteasome System Proteins
- Assays for Protein Degradation

To learn more about our Targeted Protein Degradation, visit bio-techne.com/resources/ literature/targeted-protein-degradationresearch-guide

resulting in DNA hypomethylation and activation of silent genes. This compound is a widely used chemotherapeutic agent that suppresses growth of human tumor cell lines and has received the US Food and Drug Administration (FDA) approval for the treatment of acute myeloid leukemia (AML), chronic myelomonocytic leukemia (CMML), and myelodysplastic syndrome (MDS). Another commonly used anticancer and immunosuppressive agent is 6-Thioguanine (Cat. No. 4061); this compound disrupts cytosine methylation by DNA methyltransferases after incorporation into DNA and displays cytotoxic and antineoplastic properties.

Poly (ADP-ribose) Polymerase (PARP)

Poly (ADP-ribose) polymerases (PARPs) are important components of DNA damage/repair pathways, playing key roles in genomic stability and tumor cell survival. The PARP family consists of seventeen enzyme categories able to catalyze the post-translational modification of proteins by the addition of multiple ADP-ribose moieties. PARP transfers ADP-ribose from nicotinamide dinucleotide (NAD) to Glu/Asp residues on the substrate protein. Poly-ADP-ribosylation of histone proteins is emerging as an important epigenetic regulatory mechanism and as a result, PARPs have been an attractive target for anti-cancer therapies resulting in the successful development of several PARP inhibitors for various cancers. Many inhibitors in preclinical and clinical trials target PARP1 and PARP2. Among them, Olaparib (Cat. No. 7579) and Rucaparib (Cat. No. 6230) have been approved by the US food and drug administration (FDA) for the treatment of breast cancer and ovarian cancer. PARP inhibitor AZD 2461 (Cat. No. 6060), a novel small molecule structurally analogous to Olaparib, exhibits anticancer effects in BRCA1 mutant, but not wild-type breast cancer cell lines *in vitro*. In addition, another member of PARP family, PARP14, has been gradually emerging as a promising anti-cancer drug target. PARP14 selective inhibitors, including GeA-69 (Cat. No. 6795) and H10 (Cat. No. 6228), have shown apoptosis activity in cancer cells *in vitro*.

An alternative strategy to target specific degradation of PARP is to use PROTAC® molecules, such as SK 575 (Cat. No. 7583; **BOX 3**), a potent PARP1 Degrader (PROTAC®). It comprises the PARP1/2 inhibitor Olaparib (Cat. No. 7579), joined by a linker to cereblon/cullin 4A ligand Thalidomide (Cat. No. 0652). This enables SK 575 to drive the selective ubiquitination of PARP1, leading to its subsequent degradation by the endogenous proteasome system. Using this method, SK 575 effectively reduces PARP1 protein levels in mouse SW620 tumor xenograft models.

(PROTAC[®] is a registered trademark of Arvinas Operations, Inc., and is used under license).

biotechne[°]

Enhance Your Epigenetics Research with rigorously validated antibodies for **results you can trust**

- Select from our exclusive catalog of high-quality, validated antibodies to top targets for epigenetics research including DNA methyltransferases (DNMTs), histone modifying enzymes (HMTs, HDMs, HATs, HDACs), chromatin remodelers, and more.
- Designed to meet the unique needs of researchers in the rapidly growing field of epigenetics research, our antibodies are optimized for use in a variety of applications including ChIP, WB, IHC, ICC/IF, and Flow Cytometry.
- Leverage the experience and expertise of our custom antibody development scientists to take your epigenetics research project to the next level.

List of Products

Target Protein	Product Name	Catalog #	Action	
Bromodomains (BRDs)				
	AZ 13824374	7757	Potent and selective ATAD2 bromodomain inhibitor	
	BAY 299	5970	Potent and selective BRD1 and TAF1 inhibitor	
	BAZ2-ICR	5266	Selective BAZ2 inhibitor	
	BI 9564	5590	Potent and selective BRD9 and BRD7 inhibitor; orally bioavailable	
	CeMMEC1	7139	TAF1 inhibitor	
	CPI 203	5331	BET bromodomain inhibitor; arrests cell cycle at G1 phase	
	FHT 1015	7644	Potent and selective SMARCA4/2 inhibitor	
	FHT 2344	7645	Potent SMARCA2/4 inhibitor	
	GSK 5959	5385	Potent and selective BRPF1 inhibitor	
	GSK 6853	6198	Potent and selective BRPF1 inhibitor	
	I-BET 151	4650	BET bromodomain inhibitor; also promotes differentiation of hiPSCs into megakaryocytes	
Inhibitors	I-BET 762	6521	Potent and high affinity BET bromodomain inhibitor; anti-inflammatory; orally bioavailable	
	iBET-BD2	7458	Potent and selective pan-BD2 inhibitor; orally bioavailable	
	I-BRD9	5591	Potent and selective BRD9 inhibitor	
	(+)-JQ1	4499	Potent and selective BET bromodomain inhibitor; cell permeable	
	MS 436	5173	Potent and selective BRD4(1) inhibitor	
	NVS MLLT-1	7482	Selective MLLT1/3 inhibitor	
	OF 1	5289	Selective BRPF1B and BRPF2 inhibitor	
	PFI 3	5072	Potent and selective SMARCA2/4 and polybromo 1 inhibitor	
	Rapamycin	1292	mTOR inhibitor; immunosuppressant	
	SGC SMARCA-BRDVIII	7460	Potent and selective SMARCA2/4 and PB1(bromo 5)-selective SWI/SNF bromodomain inhibitor	
	TP 238	6670	CECR2 and BPTF/FALZ inhibitor	
	TP 472	6000	Potent BRD9/7 inhibitor	
Deubiquitination				
	P 22077	4485	USP7 inhibitor	
Inhibitors	Spautin 1	5197	USP10 and USP13 inhibitor; inhibits autophagy	

Target Protein	Product Name	Catalog #	Action	
DNA Methyltransferase	s (DNMTs)			
	5-Azacytidine	3842	DNA methyltransferase inhibitor	
	Decitabine	2624	DNA methyltransferase inhibitor	
Inhibitors	EGCG	4524	β-secretase (BACE) inhibitor; inhibits amyloid assembly	
	Fisetin	5016	Naturally occurring flavonoid and antioxidant; neuroprotective	
	Lomeguatrib	4359	MGMT inhibitor	
	RG 108	3295	Non-nucleoside DNA methyltransferase inhibitor	
	SGI 1027	5155	DNA methyltransferase inhibitor	
	Zebularine	2293	DNA methyltransferase and cytidine deaminase inhibitor	
Other	6-Thioguanine	4061	Anticancer and immunosuppressive agent	
Histone Acetyltransferases (HATs)				
	A485	6387	Potent and selective p300/CBP inhibitor; orally bioavailable	
	C 646	4200	Selective p300/CBP inhibitor	
1.1.1.5	iP300w	7270	Potent p300/CBP inhibitor	
Inhibitors	NU 9056	4903	Inhibitor of KAT5 (Tip60)	
	WM 8014	6693	Potent and selective KAT6A and KAT6B inhibitor	
	WM 3835	7366	Lysine acetyltransferase HBO1 (KAT7) inhibitor	
Histone Deacetylases (HDACs)				
	BRD 9757	6040	Potent and selective HDAC6 inhibitor	
	CI 994	2952	Class I histone deacetylase inhibitor; orally bioavailable	
	EX 527	2780	Selective SIRT1 inhibitor	
	FK 228	3515	Potent and selective class I histone deacetylase inhibitor; antitumor	
	MC 1568	4077	Selective HDAC class IIa inhibitor	
Inhibitors	MS 275	6208	HDAC (Class I) inhibitor	
	Panobinostat	7629	Pan-histone deacetylase inhibitor	
	PCI 34051	4643	Potent and selective HDAC8 inhibitor	
	RGFP 966	6728	Potent and selective HDAC3 inhibitor	
	SAHA	4652	Class I and II HDAC inhibitor	
	Santacruzamate A	7191	Highly potent and selective HDAC2 inhibitor	

Target Protein	Product Name	Catalog #	Action	
	Sodium butyrate	3850	Histone deacetylase inhibitor	
	Sodium 4-Phenylbutyr- ate	2682	Histone deacetylase inhibitor	
	Trichostatin A	1406	Potent histone deacetylase inhibitor	
	Tubacin	3402	HDAC6 inhibitor; inhibits α -tubulin deacetylation	
	Tubastatin A	6270	Potent HDAC6 inhibitor	
	Valproic acid	2815	Histone deacetylase inhibitor	
Histone Demethylases (KDMs)				
	GSK J1	4593	Potent JMJD3/UTX inhibitor	
	GSK J4	4594	Histone KDM inhibitor; cell permeable	
	IOX 1	4464	Histone demethylase inhibitor; cell permeable	
	JIB 04	4972	Pan Jumonji inhibitor; active <i>in vivo</i>	
Inhibitors	JQKD 82	7676	Selective inhibitor of lysine demethylase 5	
	JTV 519	4564	Ryanodine receptor (RyR) inhibitor	
	NSC 636819	5287	KDM4A/KDM4B inhibitor	
	RN 1	4977	LSD1 inhibitor	
	TC-E 5002	5089	Selective KDM2/7 inhibitor	
Other	GSK J2	4688	Inactive control of GSK J1 (Cat. No. 4593)	
Lysine Methyltransferases (KMTs)				
	A 366	5163	Potent and selective G9a/GLP inhibitor	
	BAY 598	5991	Potent and selective SMYD2 inhibitor	
	Chaetocin	4504	SUV39H1 inhibitor	
Inhibitors	EPZ 004777	5567	Highly potent DOT1L inhibitor	
	MM 102	5307	Potent WDR5/MLL interaction inhibitor	
	MRK 740	6803	Potent PRDM9 inhibitor	
	(<i>R</i>)-PFI 2	4892	Potent and selective SETD7 inhibitor	
	SGC 0946	4541	Highly potent and selective DOT1L inhibitor; cell permeable	
	UNC 0224	3861	Potent G9a and GLP inhibitor	

Target Protein	Product Name	Catalog #	Action	
	UNC 0638	4343	Selective G9a and GLP inhibitor	
Inhibitors	UNC 0642	5132	Potent and selective G9a and GLP inhibitor	
	UNC 1999	4904	Potent and selective EZH2/EZH1 inhibitor	
	OICR 9429	5267	High affinity and selective WDR5 antagonist	
Other	(S)-PFI 2	5400	Negative control of (<i>R</i>)-PFI 2 hydrochloride (Cat. No. 4892)	
	WDR5 0103	5323	WDR5 antagonist	
Poly (ADP-ribose) Polymerases (PARPs)				
	AZD 2461	6060	Potent PARP inhibitor; orally bioavailable	
	EB 47	4140	Potent PARP-1 inhibitor	
	GeA-69	6795	Selective allosteric PARP14 inhibitor	
	H10	6228	PARP14 inhibitor; cell-permeable	
	JW 55	4514	Tankyrase inhibitor	
	Nicotinamide	4106	PARP-1 inhibitor	
Inhibitors	Olaparib	7579	Potent PARP inhibitor	
	PJ 34	3255	Potent PARP inhibitor	
	Rucaparib camsylate	6230	PARP inhibitor	
	Thalidomide	0652	Binds cereblon; also TNF- α synthesis inhibitor	
	XAV 939	3748	Potent tankyrase inhibitor	
	WIKI4	4855	Potent tankyrase inhibitor	
Polycomb Repressor Co	mplex			
	A 366	5163	Potent and selective G9a/GLP inhibitor	
	EED 226	7762	Potent and selective EED inhibitor	
1.1.1.5	GSK 126	6790	Very high affinity and selective EZH2 inhibitor	
Inhibitors	UNC 0638	4343	Selective G9a and GLP inhibitor	
	UNC 0642	5132	Potent and selective G9a and GLP inhibitor	
	UNC 1999	4904	Potent and selective EZH2/EZH1 inhibitor	
PROTAC® Degraders				
	dBRD9-A	6943	Potent BRD9 Degrader (PROTAC®)	
	JQAD1	7682	Potent and selective EP300 Degrader (PROTAC®)	

Target Protein	Product Name	Catalog #	Action	
PROTAC® Degraders				
	MZ 1	6154	(+)-JQ1 based Degrader (PROTAC®) that selectively degrades BRD4	
	SK 575	7583	Potent PARP1 Degrader (PROTAC®)	
	VZ 185	6936	Potent and selective BRD7/9 Degrader (PROTAC®)	
Protein Arginine Methyltransferases (PRMTs)				
	C 21	5128	Selective PRMT1 inhibitor	
la hikita ya	EPZ 015666	6516	Potent and selective PRMT5 inhibitor	
Inhibitors	SGC 6870	7182	Potent and selective PRMT6 allosteric inhibitor	
	TP 064	6008	Potent and selective PRMT4 inhibitor	
Protein Ser/Thr Phosphatases				
	GSK 2830371	5140	Potent and selective allosteric inhibitor of Wip1 phosphatase	
Inhibitors	Okadaic acid	1136	Protein phosphatase 1 and 2A inhibitor	
	Sanguinarine chloride	2302	Inhibitor of protein phosphatase 2C (PP2C)	
Protein Tyrosine Phosphatases				
la h ih in an	Alexidine dihydrochloride	3979	Selective inhibitor of PTPMT1	
Inhibitors	Sodium orthovanadate	2821	Protein tyrosine phosphatase inhibitor	
RNA/DNA Polymerase				
Inhibitors	Mithramycin A	1489	Inhibitor of DNA and RNA polymerase	
Other	Triptolide	3253	Inhibits RNAPII-mediated transcription; antitumor, anti-inflammatory and immunosuppressive	
Ubiquitination				
	Idasanutlin	6904	Potent MDM2 inhibitor; inhibits MDM2-p53 interaction	
	PRT 4165	5047	Inhibitor of Bmi1/Ring1A; blocks histone H2A ubiquitination	
Inhibitors	Rapamycin	1292	mTOR inhibitor; immunosuppressant	
	SMER 3	4375	Selective inhibitor of E3 ubiquitin ligase	
	SZL P1-41	5076	Selective Skp2 inhibitor; suppresses E3 ligase activity	
Other	Nutlin-3	3984	MDM2 antagonist; inhibits MDM2-p53 interaction	
Other	Nutlin 3a	6075	MDM2 antagonist; active enantiomer of Nutlin-3 (Cat. No. 3984)	

A Selection of Related Products Available from our Sister Brands

Product Name	Catalog #	Species
BMI-1 Antibody	MAB33341	Human
CBP Antibody	MAB2676	Human/Mouse/Rat
DNMT1 Antibody	AF6110	Human
DNMT3A Antibody	MAB6315	Human
EED Antibody	AF5827	Human/Mouse
EZH2 Antibody	AF4767	Human/Mouse
Histone Deacetylase 2/ HDAC2 Antibody	MAB7679	Human/Rat
Histone Deacetylase 4/ HDAC4 Antibody	MAB6205	Human
Jumonji/JARID2 Antibody	AF6090	Human/Mouse
G9a/EHMT2 Antibody	PP-A8620A-00	Human/Mouse
Lysine (K)-specific Demethylase 3A/ KDM3A Antibody	AF6746	Human
Lysine (K)-specific Demethylase 4A/ KDM4A Antibody	AF6434	Human/Mouse
Lysine (K)-specific Demethylase 4C/ KDM4C Antibody	AF6430	Human
Lysine (K)-specific Demethylase 6B/ KDM6B Antibody	AF7300	Human
PARP Antibody	MAB8095	Human
PARP Antibody	AF-600-NA	Human/Mouse
PRMT1 Antibody	AF6016	Human/Mouse
WDR5 Antibody	AF5810	Human/Mouse

Further Reading

Chiang *et al* (2022) The epigenetic regulation of nonhistone proteins by SETD7: New Targets in Cancer. *Front.Genet.* **13** 918509

Drouin *et al* (2015) Structure enabled design of BAZ2-ICR, a chemical probe targeting the bromodomains of BAZ2A and BAZ2B. *J.Med.Chem.* **58** 2553

Duan *et al* (2020) EZH2: a novel target for cancer treatment. *J.Hematol.Oncol.* **13** 104

Hu *et al* (2021) DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: mechanism and clinical application. *Clin.Epigenetics* **13** 166

Jin *et al* (2021) Advances in epigenetic therapeutics with focus on solid tumors. *Clin.Epigenetics* **13** 83

Li et al (2022) Proteolysis-targeting chimeras (PROTACs) in cancer therapy. *Mol. Cancer* **21** 99

Neganova *et al* (2022) Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. *Semin.Cancer Biol.* **83** 452

Ramadoss and Mahadevan (2018) Targeting the cancer epigenome: synergistic therapy with bromodomain inhibitors. *Drug Discov.Today* **23** 76

Ramaiah et al (2021) Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. *Life Sci.* 277 119504

Scheer et al (2019) A chemical biology toolbox to study protein methyltransferases and epigenetic signaling. *Nat.Commun.* **10** 19

Schwalm and Knapp (2022) BET bromodomain inhibitors. *Curr. Opin.Chem.Biol.* 68 102148

Sun *et al* (2022) Metabolic reprogramming and epigenetic modifications on the path to cancer. *Protein Cell*. **13** 877

Vogelmann *et al* (2020) Proteolysis targeting chimeras (PROTACs) for epigenetics research. *Curr.Opin.Chem.Biol.* **57** 8

Yélamos *et al* (2020) Immunomodulatory Roles of PARP-1 and PARP-2: Impact on PARP-Centered Cancer Therapies. *Cancers*. **12** 392

Yu *et al* (2012) Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. *Nat.Commun.* **3** 1288

List of Acronyms

Acronym	Definition
AML	Acute myeloid leukemia
BAZ	Bromodomain adjacent to zinc finger domain
BET	Bromodomain and extra-terminal bromodomain
BPTF	Bromodomain PHD finger transcription factor
BRD	Bromodomains
BRPF	Bromodomain and PHD finger containing
СВР	CREB-binding protein
DOT1L	Disruptor of telomeric silencing 1-like
DNMT	DNA methyltransferases
DUB	Deubiquitinating enzymes
EED	Embryonic ectoderm development
EZH	Enhancer of zeste homolog
GLP	Glucagon-like peptide
НАТ	Histone acetyltransferases
HDAC	Histone deacetylases
HDM	Histone demethylases
HMT	Histone methyltransferases
КМТ	Lysine methyltransferases
JAMM	JAB1/MPN/MOV34
MDM2	Mouse double minute 2
MLL	Mixed-lineage leukemia
NAD	Nicotinamide adenine dinucleotide
PARP	Poly (ADP-ribose) polymerases
PHD	Plant homeodomain
PRC	Polycomb repressive complexes
PRMT	Protein arginine methyltransferases
PROTAC	Proteolysis-targeting chimera
SAM	S-adenosyl methionine
SETD7	SET domain containing lysine methyltransferase 7
USP	Ubiquitin-specific protease
YAP	Yes associated protein

Where Science Intersects Innovation[™]

Bio-Techne® | R&D Systems[™] Novus Biologicals[™] Tocris Bioscience[™] ProteinSimple[™] ACD[™] ExosomeDx[™] Asuragen[®]

Contact Us

Global info@bio-techne.com bio-techne.com/find-us/distributors North America TEL 800 343 7475 Europe | Middle East | Africa TEL +44 (0)1235 529449 China info.cn@bio-techne.com TEL +86 (21) 52380373

For research use or manufacturing purposes only. Trademarks and registered trademarks are the property of their respective owners.

STRY0320055_SMBU_BR_Epigenetics in Cancer_GP

biotechne