
biotechne

Charge Variant Characterization of Innovator & Biosimilar Drugs with MauriceFlex & BioAccord LC-MS System

Abstract

This application note showcases an in-depth comparative analysis of charge variants of a therapeutic monoclonal antibody and a researchgrade biosimilar. Imaged capillary isoelectric focusing (icIEF)-based charge separation and fractionation was achieved on the **MauriceFlex™ System**, where a single run was sufficient to collect fractions for further analysis. Subsequent LC-MS analysis with the BioAccord[™] System was conducted without additional sample preparation, revealing critical differences between the innovator and biosimilar, such as light chain fragmentation at specific sites and the presence of C-terminal lysine residues. The use of the MauriceFlex and BioAccord System presents a straightforward and time-saving workflow for the characterization of biotherapeutics.

Introduction

The lack of proper analytical tools for separating and characterizing charge variants in monoclonal antibodies (mAbs) has been a significant challenge. icIEF, while the gold standard for charge separation, is limited to optical detection. Additionally, it cannot be easily used with mass spectrometry (MS) due to reagent incompatibility^{1,2}. The MauriceFlex system addresses this limitation by enabling charge-based separation and collection of charge variant fractions that are compatible with LC-MS, allowing for detailed mass characterization without additional sample preparation.

In this study, the innovator drug Benlysta™ (belimumab) and a research-grade biosimilar were analyzed using this approach. In the context of commercial drug development, regulatory agencies, such as the U.S. Food and Drug Administration (FDA), require evidence of structural and functional comparability between an innovator and biosimilar³. Although this study did not use a therapeutic biosimilar (and the results obtained may not be clinically relevant), the choice of techniques used throughout demonstrates an efficient workflow. The BioAccord System, a user-friendly compact benchtop time-of-flight (TOF) instrument, provided high-quality LC-MS data and automated data processing via the INTACT Mass App on the compliance-ready waters_ connect[™] Informatics Platform.

The workflow demonstrated how charge variant fractions collected on the MauriceFlex system were directly analyzed on the BioAccord System, successfully identifying the proteoforms responsible for charge profile differences between the innovator and biosimilar. This approach highlights the effectiveness of the MauriceFlex and BioAccord Systems for detailed comparative analysis.

TABLE // 01

Materials & Methods

Material	Vendor	Catalog Number
Belimumab innovator	GlaxoSmithKline	NA
Belimumab biosimilar	Ichorbio	ICH5080
MauriceFlex system		090-158
Maurice cIEF Cartridge	ProteinSimple,	PS-MC02-C
Maurice cIEF Method Development Kit	a Bio-Techne brand	PS-MDK01-C
MauriceFlex cIEF Fractionation Cartridge		PS-MC02-F
BioAccord LC-MS System		-
MassPREP™ Micro Desalting Column	Waters Technologies Corporation	186004032
Acetonitrile (Honeywell LC-MS Grade) with Fisher Optima LC-MS grade Formic Acid	Honeywell, Fisher	34697 (Acetonitrile), A117 (Formic Acid)
Milli-Q [™] water, with Fisher Optima LC-MS Grade Formic Acid	Fisher	A117

Table 1. Materials and kits used in this study.

icIEF Method

The innovator and biosimilar samples were prepared at a final concentration of 0.1 mg/mL in an ampholyte solution containing Pharmalytes (4%) 8-10.5 and 3-10 (4:1), 20% SimpleSol, 5 mM arginine, and Maurice pl markers 7.05 and 9.50. The samples were loaded onto the MauriceFlex instrument along with the Maurice[™] cIEF cartridge and focused for 1 min at 1500 V, then 12 min at 3000 V.

Fractionation Method

Samples were prepared at a final concentration of 2 mg/mL in an ampholyte solution containing Pharmalytes (4%) 8-10.5 and 3-10 (4:1), 30 mM arginine, 30% SimpleSol, Maurice pl markers 7.05 and 9.50, and Simple Western[™] pl markers 7.00 and 9.70. The samples were loaded onto the MauriceFlex instrument along with the MauriceFlex cIEF Fractionation Cartridge and focused for 10 min at 250 V, 10 min at 500 V, 10 min at 1000 V, and 25 min at 1500 V. The detected peaks mobilized for 25 min at 1000 V, followed by fraction collection for 45 sec at 1000 V. All data were analyzed using Compass for iCE software.

Intact Mass Analysis

Selected fractions collected from the MauriceFlex System were analyzed on the Waters BioAccord System without any buffer exchange or additional sample preparation. The BioAccord System was equipped with the Waters MassPREP Micro Desalting Column (2.1 x 5 mm). Mobile Phase A was water with 0.1% formic acid and Mobile Phase B was acetonitrile with 0.1% formic acid. Separation was achieved using a gradient of 5-90% Mobile Phase B over 1.5 minutes (total method time of 4 minutes). Column temperature was set to 80°C. The RDa[™] Detector settings were as follows: default capillary voltage of 1.5 kV, default desolvation temperature of 550°C, and a cone voltage of 70 V. Mass spectra of each fraction were acquired, automatically deconvoluted, and masses matched within 40 ppm via INTACT Mass App within the waters_connect Informatics Platform.

Results

Charge Heterogeneity Analysis and Fractionation

The Benlysta (belimumab) innovator and biosimilar samples were first analyzed for their charge heterogeneity using the MauriceFlex cIEF Fractionation cartridge, as shown in Figures 1A and 1B, where five major peaks were detected for each sample. Interestingly, an overall shift in pl values was observed in the peaks of the biosimilar sample, suggesting the presence of differently charged species and underscoring the need for further analysis. Peaks of both samples were subsequently mobilized and fractionated on the MauriceFlex system for downstream analysis (Figures 2A and 2B). Fraction collection was followed by peak verification using the cIEF cartridge and percent peak areas were calculated (Table 2). These peaks were selected for LC-MS analysis on the BioAccord System.

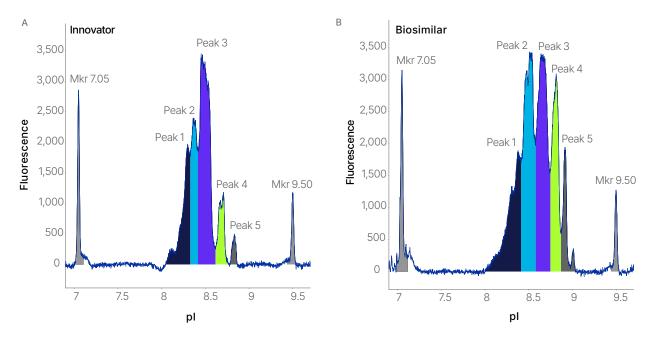
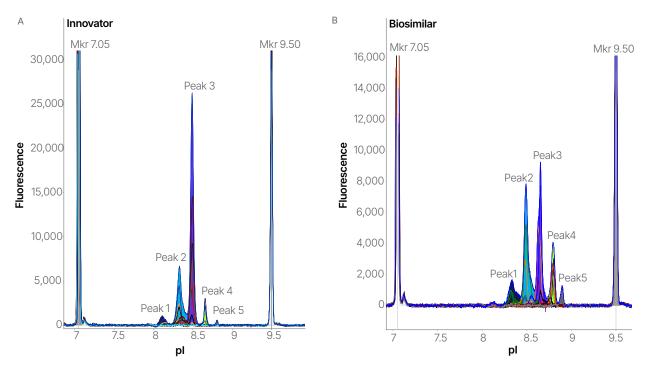



Figure 1. MauriceFlex enables iclEF-based charge separation. (A) Charge separation of the Benlysta (belimumab) innovator drug, and (B) a research-grade biosimilar with the MauriceFlex clEF Fractionation cartridge. Five major peaks were detected in both samples, however, an overall shift in pl is observed for the biosimilar.

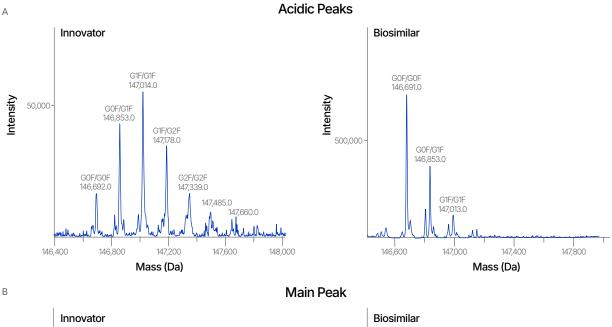
FIGURE // 02

Figure 2. The MauriceFlex system fractionates both mAb samples, providing charge variant fractions for further analysis. Each mAb was fractionated using the same method, producing 14 fractions for the innovator (A) and 16 for the biosimilar (B). Unfractionated sample was overlayed to locate and identify fractions. The collected fractions were quantitated and used for subsequent downstream analysis.

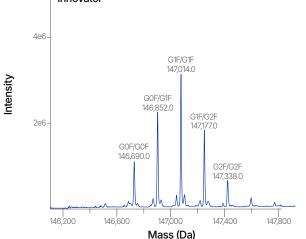
TABLE // 02

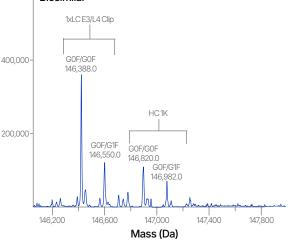
Percent Peak Area of Fractions

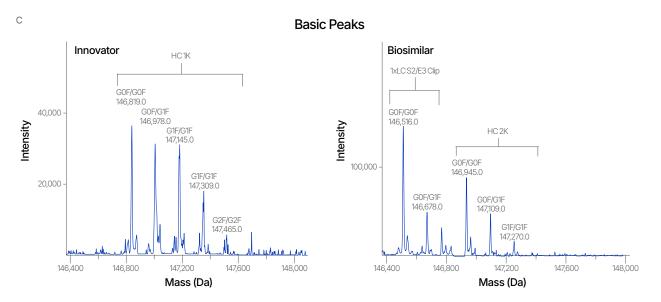
Percent Peak Area of Fractions Innovator						
Unfractionated Sample	3.2	27.2	64.8	3.9	0.9	
Fraction 1	0.6	23.7	0.0	6.7	68.9	
Fraction 2	0.0	5.9	23.5	0.0	70.5	
Fraction 3	0.0	0.7	5.0	94.1	0.1	
Fraction 4	0.0	7.9	85.2	6.8	0.0	
Fraction 5	0.0	11.6	88.4	0.0	0.0	
Fraction 6	0.1	11.3	88.6	0.0	0.0	
Fraction 7	0.0	8.9	90.9	0.0	0.2	
Fraction 8	0.0	26.9	73.1	0.0	0.0	
Fraction 9	0.0	70.7	29.1	0.1	0.2	
Fraction 10	2.7	85.6	11.5	0.1	0.1	
Fraction 11	6.3	88.0	5.6	0.1	0.0	
Fraction 12	29.0	63.5	7.2	0.4	0.0	
Fraction 13	73.7	24.5	1.2	0.3	0.3	
Fraction 14	53.4	38.4	4.5	2.6	1.0	
Biosimilar						
Sample	Peak 1	Peak 2	Peak 3	Peak 4	Peak 5	
Unfractionated Sample	11.9	35.7	33.2	15.6	3.5	
Fraction 1	4.3	0.0	1.7	1.7	92.3	
Fraction 2	0.0	0.0	66.3	33.7	0.0	
Fraction 3	0.0	0.1	0.0	99.9	0.0	
Fraction 4	0.6	0.0	1.1	98.2	0.2	
Fraction 5	0.5	0.0	6.3	93.0	0.1	
Fraction 6	0.3	0.0	60.9	38.7	0.0	
Fraction 7	0.0	9.7	90.2	0.0	0.0	
Fraction 8	0.1	6.7	93.1	0.0	0.0	
Fraction 9	0.2	2.2	97.6	0.0	0.0	
Fraction 10	4.7	93.0	2.4	0.0	0.0	
Fraction 11	0.0	96.8	1.6	1.6	0.0	
Fraction 12	5.9	94.0	0.1	0.0	0.0	
Fraction 13	23.0	75.1	0.8	0.9	0.1	
Fraction 14	94.2	4.7	0.0	1.0	0.0	
Fraction 15	97.0	0.2	0.9	1.2	0.7	
Fraction 16	92.4	6.8	0.0	0.8	0.0	


 Table 2. Percent peak area of different fractions collected.
 Peaks 1 and 2 are acidic, Peak 3 is the main peak, and

 Peaks 4 and 5 are basic.
 Percent peak area values >75% are emboldened.


Intact Mass Analysis


Acidic, main, and basic fractions of the innovator and biosimilar were analyzed with LC-MS and compared. Deconvolution revealed some critical modifications, especially in the biosimilar peaks, thus offering key insights into the shift in apparent pl values observed during icIEF analysis. Figure 3A shows the spectra of acidic peaks of the innovator and biosimilar, and data of both samples indicate the possibility of deamidation. Analysis of the main peak (MP) from both samples also presented some discrepancies. The MP represents the most abundant species corresponding to the intact monoclonal antibody or its predominant form. The innovator MP showed free LC and LC dimers (data not shown) along with the main peak, while the biosimilar's MP showed multiple species, including unprocessed C-terminal lysine (1K) of the heavy chain and a break in the light chain between glutamic acid and leucine (E3/ L4), as shown in Figure 3B. Basic fractions of both samples revealed the presence of multiple species, and highlighted further differences between the two mAbs, as seen in Figure 3C. The innovator's basic fractions predominantly showed the presence of C-terminal lysine, while the biosimilar's additionally showed a break in the light chain between serine and glutamic acid (S2/E3). The key differences found between the two samples are summarized in Table 3. All fractions analyzed also highlighted the differences in N-glycoforms between the innovator and biosimilar.



Intensity

FIGURE // 03 CONTINUED

Figure 3. Deconvoluted spectra of charge variant fractions highlight key differences between the innovator and biosimilar. (A) Acidic fractions of the innovator and biosimilar, with deconvolution revealing potential deamidation in both samples. (B) Main peak fractions, highlighting discrepancies such as unprocessed C-terminal lysine (1K) and a break between glutamic acid and leucine (E3/L4) in the biosimilar. (C) Basic fractions, showing multiple species with the innovator primarily exhibiting C-terminal lysine and the biosimilar also displaying a break between serine and glutamic acid (S2/E3).

TABLE // 03

Summary of Species Detected

Peak in icIEF	Innovator	Biosimilar
Peak 1	mAb, possible deamidation, free LC, and LC dimer*	Possible deamidation, free LC and LC dimer*
Peak 2	mAb and possible deamidation	mAb
Peak 3	mAb, free LC, and LC dimer	mAb + 1 x LC E3/L4 clip, mAb, mAb + 1K species
Peak 4	mAb + 1K species	mAb + 1 x LC S2/E3 clip, mAb + 2K species
Peak 5	Insufficient MS signal	mAb with 1 x LC S2/E3 clip + 1K species

Table 3. A summary of various species detected after LC-MS analysis of select acidic, main, and basic fractions collected after icIEF. *Free LC and LC dimers are not indicated in the spectra (Figure 3).

Conclusion

This application note demonstrates an efficient and successful workflow to separate, collect, and characterize mAb charge variants. Leveraging the MauriceFlex System for icIEF-based separation and fractionation, with the benchtop BioAccord System for LC-MS analysis, an innovator and a researchgrade biosimilar were analyzed, revealing critical differences between the two.

Acidic, main, and basic peaks were analyzed separately, uncovering the origin of a variety of charged species, including C-terminal lysine, amino acid clipping, and possible deamidation. Given that charge variants can have significant implications for drug safety⁴, continuous monitoring across various phases of development—such as process characterization, formulation development, and QC lot release—is essential.

By implementing efficient workflows like the one demonstrated here, the ability to ensure the quality and consistency of drug substances and products is significantly enhanced. This approach not only aids in meeting regulatory expectations, but also supports the development of safer and efficacious therapeutics by providing identity information on charge variants.

References

- Zhang X, Chen T, Li V, Bo T, Du M, Huang T. Cutting-edge mass spectrometry strategy based on imaged capillary isoelectric focusing (icIEF) technology for characterizing charge heterogeneity of monoclonal antibody. Anal Biochem. 2023;660:114961. doi:10.1016/j.ab.2022.114961
- Dai J, Lamp J, Xia Q, Zhang Y. Anal Chem. 2018;90(3):2246-2254. doi:10.1021/acs.analchem.7b04
- 3. Review and Approval, Biosimilars. U.S. Food and Drug Administration https://www.fda.gov/drugs/biosimilars/ review-and-approval
- 4. Chung S, Tian J, Tan Z, et al. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnol Bioeng. 2018;115(7):1646-1665. doi:10.1002/bit.26587

Learn more about the MauriceFlex System

Scan the QR Code bio-techne.com/mauriceflex

Learn more about the BioAccord System

Scan the QR Code waters.com/BioAccord

For research use or manufacturing purposes only. Not for use in diagnostic procedures. MauriceFlex, Maurice, and Simple Western are trademarks of ProteinSimple, Inc. Waters, BioAccord, waters_connect, MassPREP and RDa are trademarks of Waters Technologies Corporation. Benlysta is a trademark of GlaxoSmithKline Intellectual Property Limited. Milli-Q is a trademark of Merck KGaA. Trademarks and registered trademarks are the property of their respective owners.

7244180391_0924

biotechne" // Global Developer, Manufacturer, and Supplier of High-Quality Reagents, Analytical Instruments, and Precision Diagnostics.