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FIGURE 4. icIEF separation of XMT-1535 
mAb on Maurice icIEF cartridge (A) and 
Fractionation cartridge (B). icIEF separation of 
heat stressed XMT-1535 mAb on Maurice 
icIEF cartridge (C) and Fractionation cartridge 
(D). XMT-1535 was run at 0.1 mg/mL on 
Maurice icIEF and 0.5 mg/mL on Fractionation 
icIEF. Both samples included 4% Pharmalyte 
(3-10:8-10.5=1:3) and 0.35% methylcellulose, 
except the fractionation sample also included 
10 mM arginine. The separation profile 
between the two types of cartridges are 
comparable for the number of peaks, however, 
different peak ratios were observed on the 
Fractionation cartridge as high sample 
concentration caused self-quenching of the 
fluorescent signal. As expected, the heat 
stressed XMT-1535 shows increased peak 
ratios for A1, A2, A3 and B peaks compared to 
XMT-1535 on Maurice icIEF and a similar 
trend is observed for the Fractionation icIEF 
profile.
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DISCUSSION CONCLUSION

Therapeutic monoclonal antibodies (mAbs) make up a large portion of the rapidly growing drug market. Ensuring safety 
and efficacy through comprehensive understanding of these products’ critical quality attributes (CQAs), including charge 
heterogeneity, is a regulatory requirement. Various charge isoforms of mAbs can result from cell culture or production processes, 
potentially affecting the mAb structure and function. While imaged capillary isoelectric focusing (icIEF) is the preferred 
method for charge profiling, ion-exchange chromatography (IEC) has been the major tool for fractionation combined with 
characterization. However, IEC is not compatible with certain types of molecules, hydrophobic antibody drug conjugates (ADCs) 
for example, and icIEF typically provides higher separation resolution. Moreover, an individual charge variant obtained from IEC 
fractionation may not be comparable to the variant peak in the icIEF profile. Therefore, there is an unmet need for IEF-based 
fractionation of charge variants for characterization.

We have developed a novel icIEF fractionation solution, which involves icIEF separation and collection of charge variants. This 
solution enables Maurice icIEF-based peak identification followed by downstream analysis. Here we report icIEF fractionation 
followed by ZipChip-based mass spectrometry (MS) characterization of the NIST mAb and XMT-1535 mAb. ZipChip (CE-ESI) was 
utilized for mass spectrometry characterization of the fractions due to its broad sample matrix compatibility, easy sample prep, 
and fast mass spectrometry analysis time. Individual charge variants of each antibody were successfully collected in less than 
2 hours with purity > 80% using icIEF separation conditions with or without urea. Rapid analysis using ZipChip showed the mass 
spec identification of major and minor isoforms correlated well with reported mass spec data (literature and report). Urea in icIEF 
separation did not affect the quality of fractionation nor the mass spec result. Multiple fractionation runs of the NIST mAb suggested 
good reproducibility of the system. We believe this novel icIEF fractionation solution coupled with other analysis methods, such as 
mass spectrometer, will deliver a powerful charge variant characterization tool for biotherapeutic analytical tool kit. 

Understanding charge heterogeneity for protein therapeutics is necessary for meeting regulatory requirements and 
commercialization. The icIEF fractionation system reported here provides a more streamlined workflow for mass 
spectrometry (MS) characterization of charge variants detected using icIEF. Using NIST mAb as an example, we 
demonstrated that our fractionation system can collect individual charge variants with ΔpI <0.1 and abundance < 2%. 
ZipChip-based MS successfully detected each charge variant collected and their mass identification correlated well with 
reported data. We also used this system coupled with ZipChip to characterize the XMT-1535 mAb before and after heat 
stress. The results indicated the heat stressing only changed the relative abundance of the charge variants but there were 
no significant or detectable changes in the modifications on each charge variant. We also performed fractionation of XMT-
1535 mAb with and without urea and subjected the fractions for ZipChip-based MS characterization. The charge profile of 
the individual charge variants and MS identification suggested urea has no impact on the quality of fractionation nor integrity 
of MS result. In addition, preliminary reproducibility data from multiple fractionation runs of NIST shows good reproducibility 
of our fractionation system. 

We present a novel icIEF fractionation solution, in conjunction with down stream analysis methods, such as ZipChip-based 
MS, making it possible for versatile structural and functional characterization of individual charge variants. Key advantages 
include, but are not limited to: 

•	Easy method transfer: Use existing Maurice icIEF method on Fractionation cartridge with minimum/no modification

•	Same IEF peaks: Collected charge variants are identical to those detected in Maurice icIEF profiles

•	Sample flexibility: Methylcellulose, urea, or different types of additives can be used during fractionation and will either 
not enter the collected fractions or can be removed before downstream analysis

•	Fast MS analysis: The speed, sensitivity, and sample matrix compatibility of the ZipChip-MS method make it an excellent 
platform for mass spec analysis of the icIEF fractions

•	More sample: Ability to pool charge variant fractions from multiple runs when more sample is required

•	Flexibility of downstream analysis: Fractions can be characterized using other analysis methods beyond 
mass spectrometry 

icIEF separation and fraction collection:
Samples were mixed with ampholytes, pI markers and arginine as described in figures below. Samples were loaded into the Fractionation cartridge 
and icIEF separation were performed under defined voltage steps. At the end of icIEF separation, mobilization was initiated by introduction of 
mobilization buffer and fractions are collected at defined intervals in to a 96-well plate or vial containing mobilization buffer. Focusing and mobilization 
were monitored using real-time fluorescent imaging. 

Peak identification:
Peak identification was performed using a single fraction from a single fractionation run. If needed, higher quantity of charge variant can be obtained 
by combining fractions from multiple fractionation runs (i.e., pooling), however no pooling was needed for this study. A portion of each fraction 
was checked on Maurice icIEF using conditions described in figures below to confirm the charge variant (pI and purity) present in each fraction. 
Mass spectrometry analysis of each fraction was performed using a ZipChip system (908 Devices Inc.) coupled to a Thermo Exploris 240 mass 
spectrometer. An HSN chip (High Speed Native) was used with “Peptides” BGE following the vendor’s recommendation. The separation field 
strength was 1000 V/cm, injection volume was 2 nL, and pressure assist started at 0 min. No buffer exchange was performed prior to analysis.

Schematic of the icIEF 
fractionation system (left). 
The fractionation system 
could be a stand-alone 
instrument or a Maurice 
add-on consisting of a 
Fractionation cartridge and  
a sample tray that contains  
(a) Sample, (b) Reagents 
needed for icIEF separation, 
(c) Reagents needed for 
fraction collection, and  
(d) fraction collection vials 
or plate

ZipChip® on Thermo Scientific™ Q Exactive™ HF

FIGURE 1. (A) icIEF separation of NIST mAb on Maurice icIEF cartridge using native fluorescence detection (B) icIEF separation of NIST mAb on 
Fractionation cartridge using native fluorescence detection. NIST mAb was run at 0.1 mg/mL on Maurice icIEF and 0.5 mg/mL on Fractionation icIEF. 
Both samples included 4% Pharmalyte (3-10:8-10.5=1:3) and 0.28% methylcelluose, except the fractionation sample also included 22.5 mM arginine. 
The separation profile between the two types of cartridges are comparable for the number of peaks, however, different peak ratios were observed on 
the Fractionation cartridge as high sample concentration caused self-quenching of the fluorescent signal. (B2 = Basic peak 2, B1 = Basic peak 1, M = 
Main peak, A2 = Acidic peak 2, A1 = Acidic peak 1).

8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8
pI

0

5,000

10,000

15,000

20,000

25,000

30,000

Fl
uo

re
sc

en
ce

A1

A2

M

B2

B1

8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8
pI

0

2,000

4,000

6,000

8,000

10,000

12,000

Fl
uo

re
sc

en
ce

A1

A2

M

B2

B1

B1
B2

M

A2
A10

10,000
20,000
30,000

0
500

1,000
1,500

0
500

1,000
1,500

Fl
uo

re
sc

en
ce

7.5 8.0 8.5 9.0 9.5 10.0pI

0
4,000
8,000

12,000

0
4,000
8,000

12,000

0
4,000
8,000

12,000

Reference

B2

B1

M

A2

A1

FIGURE 2. Maurice icIEF profile of unfractionated (intact) NIST mAb 
and fractions collected for NIST mAb charge variants using the same 
conditions as Maurice icIEF from Figure 1. The five charge variants 
were collected with > 90% purity based on the IEF peak profiles and 
shown in Table 1. All charge variant fractions in this image were 
collected from a single fractionation run. (B2 = Basic peak 2, B1 = 
Basic peak 1, M = Main peak, A2 = Acidic peak 2, A1 = Acidic peak 1).

ZipChip-based MS characterization of NIST IEF fractions
3A) CZE profile	 3B) Raw mass spectra	 3C) Deconvoluted mass spectra

FIGURE 3. (A) Base peak CZE e-gram of NIST mAb fractions from the ZipChip system. Single peaks were detected for all five charge variants.  
(B) Raw mass spectra of thbg he NIST fractions. (C) Deconvolution mass spectra of NIST mAb fractions. Four major glycoforms were identified for  
all charge variants. The charge variant identities are shown in Table 1 below.

PEAK AVERAGE FRACTION 
PURITY (%)

DECONVOLUTED 
MASS (DA) MASS SHIFT (DA) MODIFICATION

B2 100 148459.06 255.83 C-term K × 2
B1 100 148330.38 127.15 C-term K
M 93 148203.23 0.00 G0F/G1F 
A2 100 148364.03 160.80 Glycation
A1 100 148363.08 159.85 Glycation

TABLE 1. Charge variant identifications of NIST mAb fractions. High purity (> 90%) was achieved for each charge variant in the 
fractions. The deconvoluted masses listed in the table are for the G0F/G1F glycoform of each charge variant. The mass shifts 
listed for each charge variant are in reference to the G0F/G1F glycoform of the main charge variant. 
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FIGURE 5. Maurice icIEF profile of unfractionated (intact) and fractions collected for charge variants of XMT-1535 mAb (A) and heat 
stressed XMT-1535 mAb (B) using the same conditions as Maurice icIEF from Figure 4. All charge variants with >5% peak area were 
successfully collected, and most charge variants were collected in a single fraction with 100% purity. Two fractions were collected with 
the Main charge variant for the heat stressed XMT-1535 mAb. One fraction contained high purity of Main (> 90%) and a second 
fraction showed Main co-eluted with the A3 charge variant. All charge variants in a single panel were collected from a single 
fractionation run. (B = Basic peak, M = Main, A3 = Acidic peak 3, A2 = Acidic peak 2, A1 = Acidic peak 1).

5A) Reference XMT-1535 Fractions 5B) Stressed XMT-1535 Fractions

6A) Raw mass spectra 6B) Deconvoluted mass spectra

FIGURE 6. (A) The raw mass spectra of XMT-1535 mAb fractions (left) and heat stressed XMT-1535 mAb fractions (right). (B) Deconvoluted mass spectra of  
XMT-1535 mAb fractions (left) and heat stressed XMT-1535 mAb fractions (right). Four charge variants were detected for both mAb samples. The deconvoluted  
mass of acidic variants for both mAb samples are shifted by by a few Da compared to the main peaks, suggesting potential deamidation on acidic variants.

FIGURE 7. (A) icIEF separation of heat stressed XMT-1535 mAb with 4M urea on a Fractionation cartridge. The mAb was run at 0.5 mg/mL on 
Fractionation icIEF with 4% Pharmalyte (3-10:8-10.5=1:3), 0.35% methylcellulose and 10 mM arginine. (B) Maurice icIEF profile of unfractionated heat 
stressed XMT-1535 mAb (top trace) and fractions collected for charge variants of the mAb focused and fractionated in the presence of urea. Unfractionated 
and fraction samples were run using the same Maurice icIEF conditions as Figure 4. All charge variant peaks, including < 2% peak area, were successfully 
collected into individual fractions with > 90% purity. All charge variant fractions in this image were collected from a single fractionation run. (B = Basic peak, 
M = Main, A3 = Acidic peak 3, A2 = Acidic peak 2, A1 = Acidic peak 1).

FIGURE 8. The raw mass spectra (A) and 
deconvoluted mass spectra (B) of fractions collected for 
heat stressed XMT-1535 mAb focused and fractionated 
in the presence of urea. Similar mass shifts are 
observed for the deconvoluted mass of acidic variants 
compared to the heat stressed mAb fractions without 
urea (see Figure 6), indicating the presence of urea 
during fractionation had no impact on the fractionation 
performance and mass spec results.

FIGURE 9. Overlay of IEF separation profiles of NIST mAb from five 
icIEF fractionation runs demonstrate excellent reproducibility. NIST  
mAb at 0.5 mg/mL was prepared in a mixture of 4% Pharmalyte  
(3-10:8-10.5=1:3), 0.28% methylcellulose and 22.5 mM arginine.  
Native fluorescence images were taken at the completion of IEF 
separation. (B2 = Basic peak 2, B1 = Basic peak 1, M = Main peak,  
A2 = Acidic peak 2, A1 = Acidic peak 1).

FIGURE 10. Purity for NIST mAb charge variants from five repeat icIEF fractionation runs presented as per run (left) and per charge variant 
(right). Fractionation of NIST mAb was able to achieve 100% purity for the acidic and basic charge variants and > 80% purity for the main 
charge variant and can be achieved in a reproducible manner. Purity of a charge variant present in multiple fractions in a single run is the 
average purity of those fractions. 

TABLE 2. Glycoform identification in the fractions of the main peak from reference XMT-1535 and 
heat stressed XMT-1535 mAb. Reference mAb and stressed mAb have the same deconvolution 
masses, indicating the heat stressing only changed the relative abundance of the charge variants 
but there were no significant or detectable changes in the modifications on each charge variant. 
The small mass error (≤20 ppm) of the observed deconvoluted mass for reference mAb and 
stressed mAb suggests high mass accuracy of the system.

icIEF fractionation and ZipChip-based MS characterization of XMT-1535 mAb before and after heat stress

icIEF fractionation of heat stressed XMT-1535 mAb with urea and 
ZipChip-based MS characterization

Reproducibility of icIEF fractionation system with NIST mAb 
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Figure 6a XMT-1535

Heat stressed XMT-1535Reference XMT-1535 fractions
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