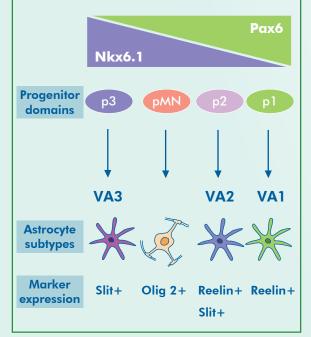
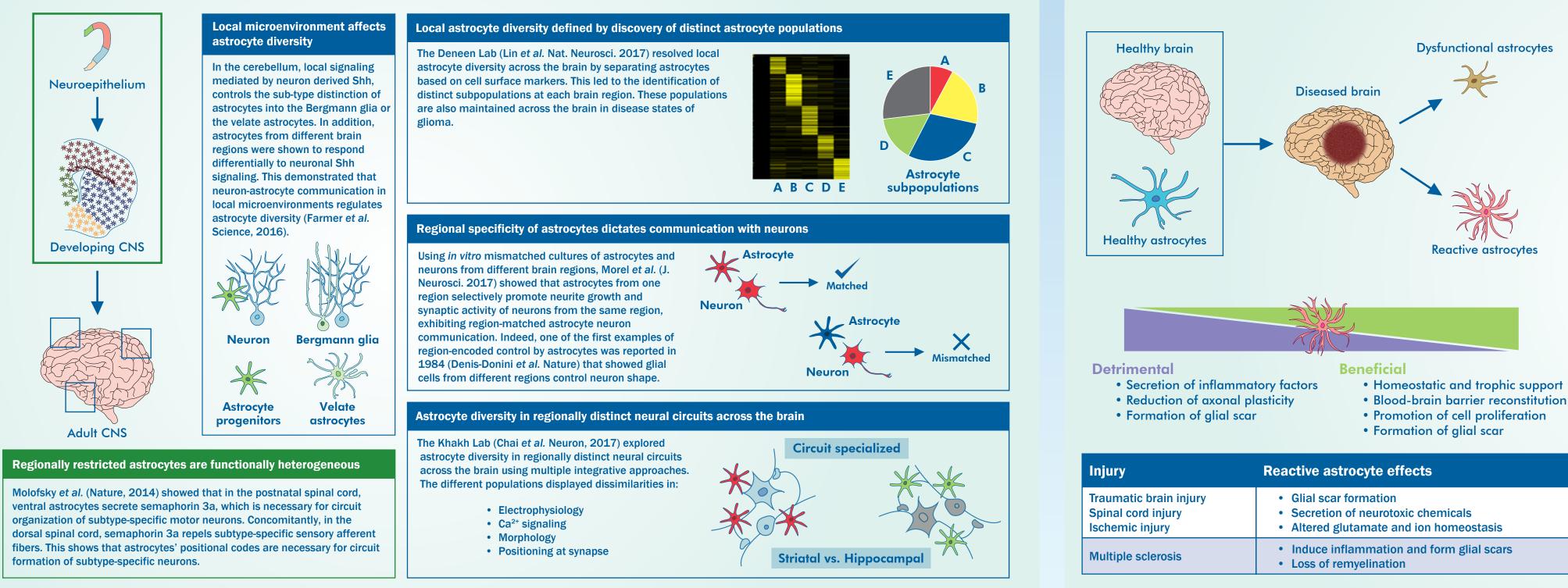

NOVUS BIOLOGICALS a **biotechne**[®] brand

Astrocyte Development


Astrocyte Diversity


Regional diversity arising from precursor migration

The Rowitch Lab (Tsai et al. Science. 2012) fate-mapped astrocytes throughout the brain and spinal cord to show that astrocytes are regionally allocated in domains based on their original location at the ventricular zone. Specific domain architectures were maintained even after

Regional diversity arising from levelopmental patterning

The Anderson Lab (Hochstim et al. Cell, 2008) showed that white matter astrocyte diversity is positionally dependent on the unique expression pattern of transcription factors along the dorsoventral axis of the spinal cord.

PATHWAYS & KEY MOLECULAR TARGETS Astrocyte Development & Function

Contributors: Debosmita Sardar, PhD., Yi-Ting Cheng, MS., Benjamin Deneen, PhD., Baylor College of Medicine, Houston, TX 77030 (e-Mail: deneen@bcm.edu)

Role of Astrocytes in Disease and Injury

injury	Reactive astrocyte effects
Traumatic brain injury Spinal cord injury Ischemic injury	 Glial scar formation Secretion of neurotoxic chemicals Altered glutamate and ion homeostasis
Multiple sclerosis	 Induce inflammation and form glial scars Loss of remyelination

www.novusbio.com

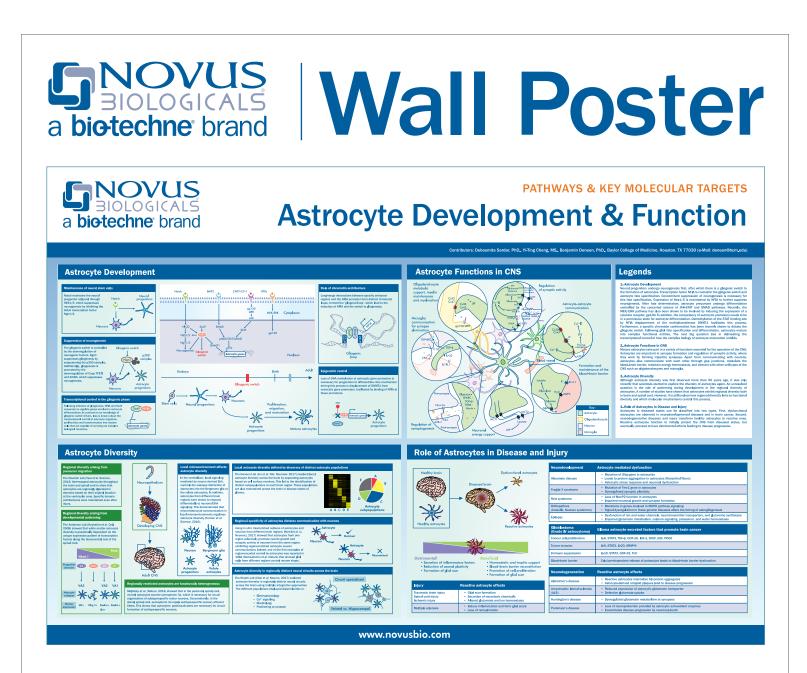
Legends

1. Astrocyte Development

Neural progenitors undergo neurogenesis first, after which there is a gliogenic switch to the formation of astrocytes. Transcription factor NFIA is crucial for the gliogenic switch and astrocyte fate specification. Concomitant suppression of neurogenesis is necessary for this fate specification. Expression of Hes1/5 is maintained by NFIA to further suppress neurogenesis. After fate determination, astrocyte precursors undergo differentiation controlled by the concerted actions of JAK-STAT and SMAD pathways. Recently, the MEK/ERK pathway has also been shown to be involved by inducing the expression of a cytokine receptor, gp130. In addition, the competency of astrocytic promoters needs to be in a permissive state for astrocyte differentiation. Demethylation of the STAT binding site by NFIA displacement of the methyltransferase DNMT1 facilitates this process. Furthermore, a specific chromatin conformation has been recently shown to dictate the gliogenic switch. Following glial fate specification and differentiation, astrocytes mature into complex functional entities. The next big question lies in delineating the transcriptional control of how the complex biology of astrocyte maturation unfolds.

2. Astrocyte Functions in CNS

Mature astrocytes take part in a variety of functions essential for the operation of the CNS. Astrocytes are important in synapse formation and regulation of synaptic activity, where they work by forming tripartite synapses. Apart from communicating with neurons, astrocytes also communicate with each other through gap junctions, modulate the blood-brain barrier, maintain energy homeostasis, and interact with other cell types of the CNS such as oligodendrocytes and microglia.


3. Astrocyte Diversity

Although astrocyte diversity was first observed more than 50 years ago, it was only recently that scientists started to explore the diversity of astrocytes again. An unresolved question is the role of patterning during development in the regional diversity of astrocytes. A number of studies have shown that astrocytes exhibit regional diversity both in brain and spinal cord. However, it is still unclear how regional diversity links to functional diversity and which molecular mechanisms control this process.

4. Role of Astrocytes in Disease and Injury

Astrocytes in diseased states can be classified into two types. First, dysfunctional astrocytes are observed in neurodevelopmental diseases and in brain cancer. Second, neurodegenerative diseases and injury transform healthy astrocytes to reactive ones. Reactive astrocytes function to initially protect the CNS from diseased states, but eventually proceed to have detrimental effects leading to disease progression.

Neurodevelopment	Astrocyte mediated dysfunction
Alexander disease	 Mutation of <i>Gfap</i> gene in astrocytes Leads to protein aggregation in astrocytes (Rosenthal fibers) Astrocytic stress response and neuronal dysfunction
Fragile X syndrome	 Mutation of <i>Fmr1</i> gene in astrocytes Dysregulated synaptic plasticity
Rett syndrome	 Loss of MecP2 function in astrocytes Impaired neuronal growth and synapse formation
RASopathies (Costello, Noonan syndrome)	 Mutations in genes involved in MAPK pathway signaling Signal dysregulation in these genetic diseases alters the timing of astrogliogenesis
Epilepsy	 Dysfunction of ion and water channels, neurotransmitter transporters, and glutamine synthetase Impaired glutamate metabolism, calcium signaling, potassium, and water homeostasis
Glioblastoma (Grade IV astrocytoma) Glioma astrocyte secreted factors that promote brain cancer	
Cancer cell proliferation	IL-6, STAT3, TGF-β, GDF-15, IGF-1, bFGF, EGF, PDGF
Tumor invasion	IL-6, STAT3, IL-23, MMP-9
Immune suppression	IL-10, STAT3, GDF-15, TnC
Blood-brain barrier	Calcium-dependent release of potassium leads to blood-brain barrier dysfunction
Neurodegeneration	Reactive astrocyte effects
Alzheimer's disease	 Reactive astrocytes internalize Aβ protein aggregates Astrocyte-derived amyloid plaques lead to disease progression
Amyotrophic lateral sclerosis (ALS)	 Reduced expression of astrocytic glutamate transporter Defective glutamate uptake
Huntington's disease	Dysregulated glutamate metabolism at synapses
Parkinson's disease	 Loss of neuroprotection provided by astrocytic anti-oxidant enzymes Exacerbates disease progression by neuronal death

