Abstract Number : 943 Validation of atypical drug combinations identified from combination databases

Rainer Grant¹, **Marco T. Pinheiro^{2*}**, Rachel Weller Roska¹, Robert Felix² 1. Bio-Techne, 614 McKinley Place NE, Minneapolis, USA 2. Bio-Techne, The Watkins Building, Avonmouth, Bristol, UK *- Presenting and corresponding author

Background

Rational drug combinations, based either on pharmacological or biological interactions, are being increasingly used in a clinical context, with many effective treatments using combination therapies. Implementing beneficial drug combinations can overcome clinical challenges including dose toxicity, drug resistance and lead to improved therapeutic responses¹. Drug interactions can be classified into several types:

- Synergism Combined effect is greater than the sum of effects seen with individual treatments
- Additivity Observed response is the sum of the individual responses
- Potentiation One drug does not elicit a response but enhances the effect of another drug
- Antagonistic Exposure to one compound reduces the effect of the other

Identifying rational combinations with a clinically beneficial effect is a challenge, with the initial identification and validation based on preclinical work within cells and animal models². Towards this, several data portals including DrugComb³ portal and DrugcombDB⁴ have come online to consolidate the results of cell-line-based drug combination studies. Providing a wealth of information, these comprehensive datasets allow for the identification of synergistic combinations across different tumour types and cell lines.

By intersecting commercially available drugs from the Tocris Catalogue with the DrugComb portal database, we set out to identify and interrogate atypical drug combinations. Focusing on combinations with the JAK inhibitor Ruxolitinib, an FDAapproved API with multiple indication including blood cancer, we experimentally validate atypical drug combinations reported as synergistic within the Lymphoma cell line, L-1236, and explore use of cytokines as a biomarker for synergy.

Workflow Outline

Results

1. Data intersection and identification of atypical synergies

Based on drug names, we successfully intersected publicly available data from the DrugComb database with commercially available small molecules available within the Tocris catalogue. By including cancer type, cell lines and synergy scores, a comprehensive dataset was generated, allowing for the exploration of known combinations across multiple cancers, cell lines and drug targets. Focusing on combinations with Ruxolitinib multiple atypical combinations with strong synergy are apparent, **Figure 1.**

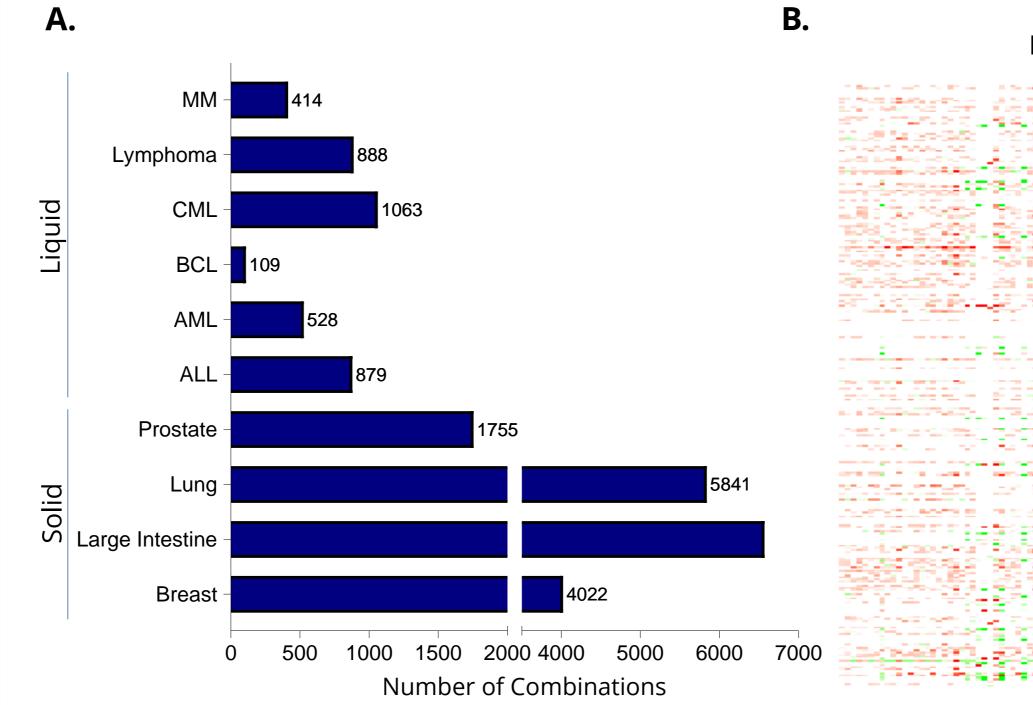
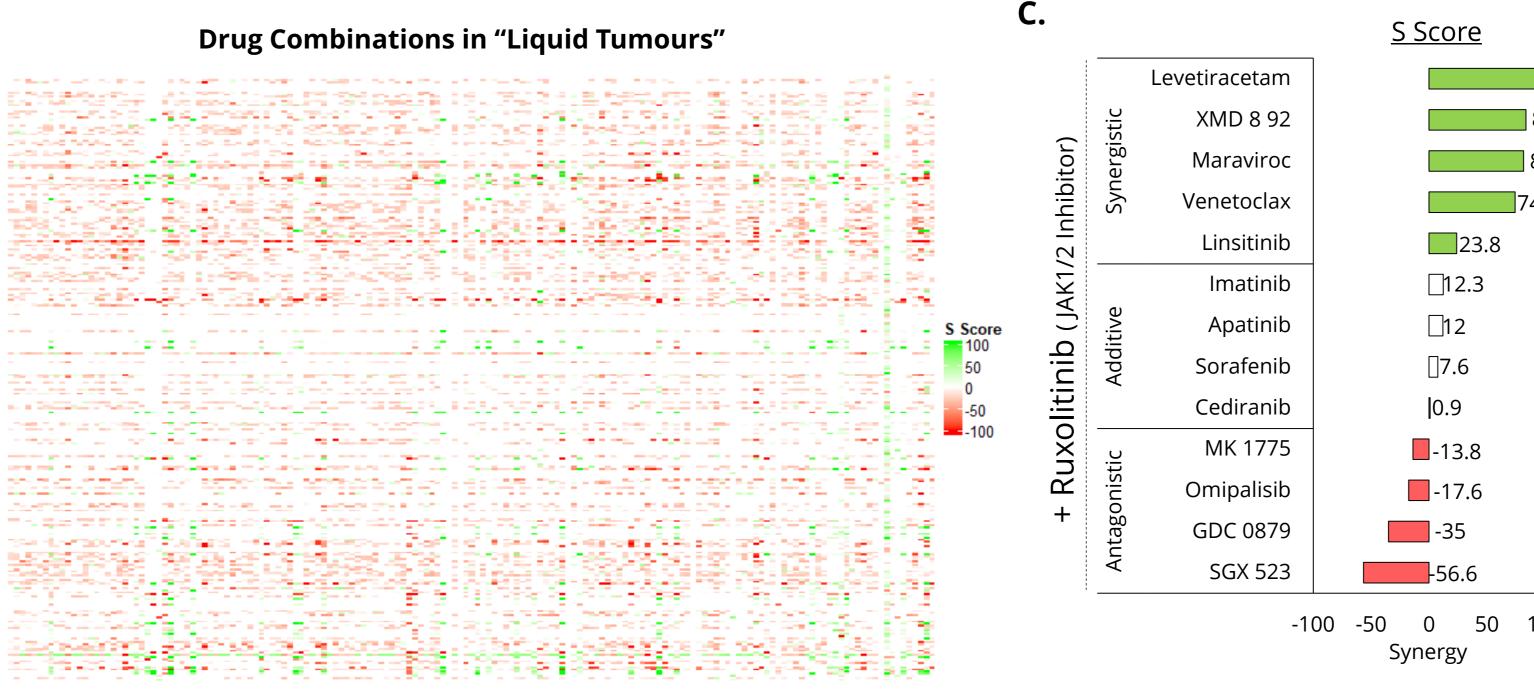
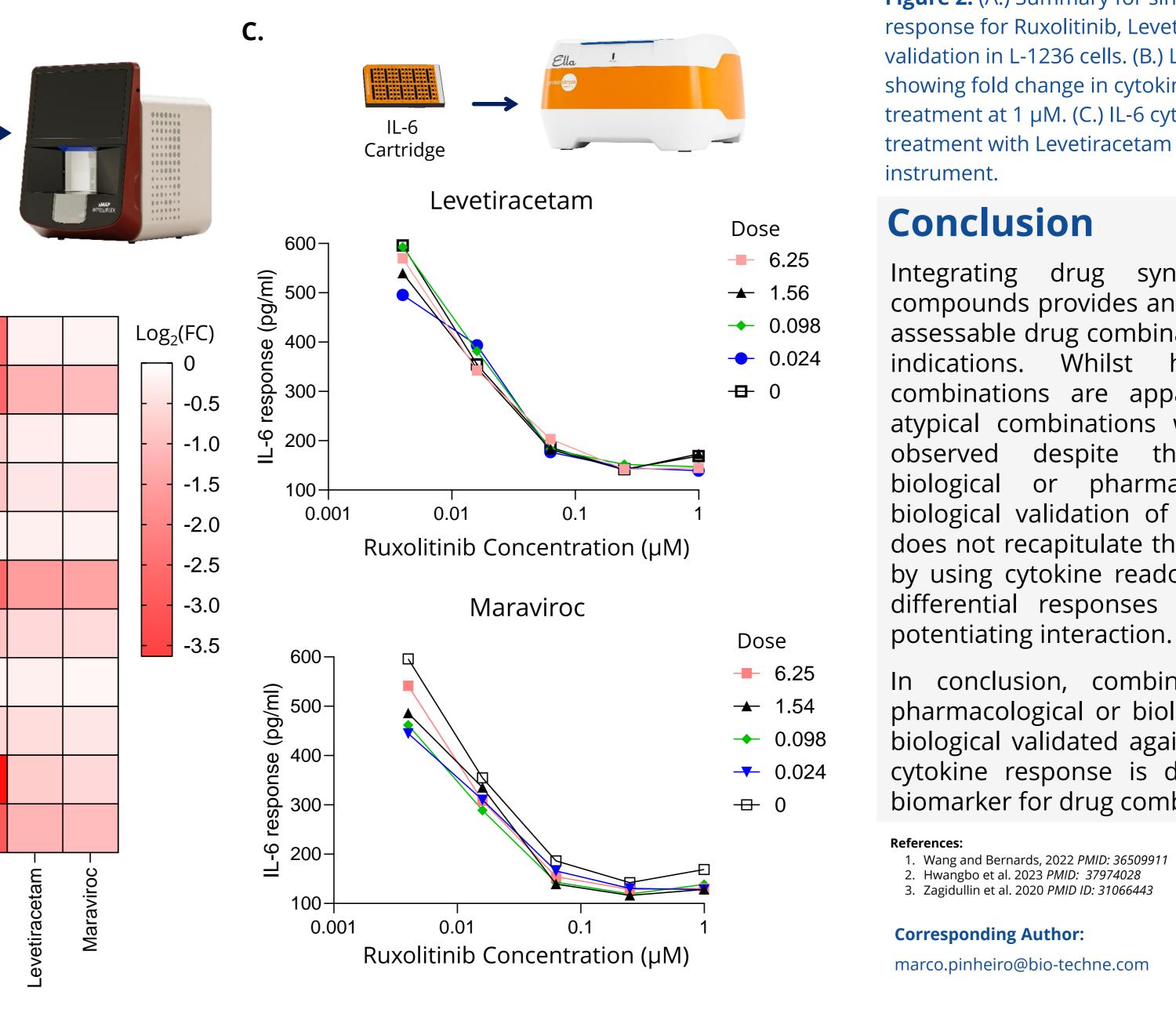


Figure 1. (A.) Number of interrogatable drug combinations by tumour type. (B.) Refined drug combinations with Ruxolitinib (Cat No: 7064) in L-1236 cells with indicated S and BLISS synergy score in addition to pharmacological annotation of drug targets.

<u>2. In-cellulo validation of drug combinations and cytokine release as a biomarker for potential synergy</u>


TNF-a-


Using cellular proliferation assays, we set out to validate the unexpected combination of Levetiracetam and Maraviroc with Ruxolitinib. Single-drug dose response shows that Ruxolitinib is potent as a single treatment, matching known IC50s for the L-1236 cell line. However, treatments with Levetiracetam and Maraviroc show no inhibition, with combined treatments with Ruxolitinib showing no observed synergy experimentally. Whilst testing dose responses, we set out to measure cytokine levels with the idea of using cytokine response as an early synergy biomarker prior to downstream viability effects, using a Luminex panel assay to identify correlative cytokines. Focusing on IL-6 response using the Ella platform and precisely tracking cytokine response to combined treatments, we observe an enhanced response following Ruxolitinib and Maraviroc treatment. **Figure 2. Figure 2.** (A.) Summary for single drug and combination dose

_					-			
	Drug Profi	le and	Syner	gy Summa	ary		В.	
Overview		I	-		-			
Drug Names	Ruxolitinib		Levetiracetam		Maraviroc			
+U		>			F F O		Luminex Panel (LKTM010B)	
Targe	t Janus Kinas (JAK1/2		,	ic Vesicle n A S(VPA)	Recept	emokine or type 5 CR5)		
Тур	e Inhibito	Inhibitor Modulator		lulator	Antagonist			
Indicatio	n Neoplasr	ns	Epilepsy		HIV Infections		MCP-1-	
Approval Phas	e	Approved			PD-L1/B7-H1-			
bserved							MIP-1a-	
Drug 1			Ruxo	litinib				
Drug 2	Leveti	Levetiracetam		Maraviroc		CD40 Ligand-		
Bliss Score:	1	107		89		IL-8-		
Reported		0.19		Drug 1	0.14		014 005	
Synergy Dosage (µM)		0.07		Drug 2	0.10		GM-CSF-	
lidation							Granzyme B-	
	Drug Name:	IC50 (µM)		Observation		IL-10-		
Cinala Dasa	Ruxolitinib	0.68		-			IL-1ra-	
Single Dose	Levetiracetam	-		No effect on viability at 100µM			IL-6-	
	Maraviroc	-	1	Minor decrease in viability at 100µM – likely cytotoxicity				

100µM – likely cytotoxicity

Drug 1	Ruxolitinib				
Drug 2	Levetiracetam	Maraviroc			
Bliss Score (Synergy Finder)	-1.42	-1.39			

	Dligg Capito		
	<u>Bliss Score</u>	Drug Target	Cat.No
98.1	107	SV2A Modulator	2839
83.7	68	MAPK7, BMK1, ERK5, BRD4 Inhibitor	4132
81.6	89	CCR5 Antagonist	3756
4.3	90	BCL-2 Inhibitor	6960
	□12	IGF-1R Inhibitor	7652
	□ 12	PDGFR Inhibitor	5906
	1	EGFR Inhibitor	6811
	2.5	RAF Kinase	6814
] -3	VEGFR	7454
	1.12	Wee1	7589
	-0.2	PI-3K	6792
	-23	RAF Kinase	4453
	-17	MET Receptor	5356
100	-50 0 50 100 Synergy	<u>QR Code</u> <u>For</u> <u>Data Access:</u>	

response for Ruxolitinib, Levetiracetam and Maraviroc and validation in L-1236 cells. (B.) Luminex instrument and heatmap showing fold change in cytokine response following, single drug treatment at 1 µM. (C.) IL-6 cytokine responses from Ruxolitinib treatment with Levetiracetam or Maraviroc using the Ella

Integrating drug synergy data and available compounds provides an extensive knowledge base of assessable drug combinations for oncology and other indications. Whilst highly synergistic rational combinations are apparent in this data, several atypical combinations with reported synergies are observed despite these combinations lacking biological or pharmacological rationale. Direct biological validation of these atypical combinations does not recapitulate the reported synergy. However, by using cytokine readouts as a synergy biomarker, differential responses are observed suggesting a

In conclusion, combinations lacking an obvious pharmacological or biological rational, require direct biological validated against reported. Further to this, cytokine response is demonstrated as a potential biomarker for drug combinations.

4. Liu et al. 2020. PMID: 31665429 5. Ianevski et al. 2022 PMID: 35580060

